- Full text:
- PDF (eReader) / PDF (Download) (4893 kB)
We investigated the contact-separation behavior of micro fluids, which is an efficient candidate for dispensing mechanisms that can replace pipetting in biochemical assays. During the Vertical contact-separation process (VCSP) of droplets, gravity causes a volume difference, ΔV. To solve this problem, we designed the radius difference of the solid–liquid interface, δR, and proposed to manipulate droplets against gravity. Systematic observations showed that the ΔV monotonically decreased with an increase in the δR, and the droplet volume was maintained (ΔV = 0) at a critical δR*. This behavior quantitatively correlates with a theoretical model based on the force balance between gravity and surface tension under asymmetric boundary conditions. Thus, after the VCSP, the ΔV was maintained at zero and the arbitrary volume of droplets was controlled using the δR. The results showed that the proposed mechanism can suppress the ΔV and quantitatively control the droplet volume. This study contributes to the three-dimensional and accurate manipulation of droplets.
References
- 1 P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004). Crossref, Google Scholar
- 2 R. B. Fair, Microfluid. Nanofluid. 3, 245 (2007). 10.1007/s10404-007-0161-8 Crossref, Google Scholar
- 3 D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, Chem. Soc. Rev. 39, 1153 (2010). 10.1039/b820557b Crossref, Google Scholar
- 4 K. Hattori, H. Wada, Y. Makanae, S. Fujita, and S. Konishi, IEEJ Trans. Electr. Electron. Eng. 11, S123 (2016). 10.1002/tee.22344 Crossref, Google Scholar
- 5 H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004). 10.1146/annurev.fluid.36.050802.122124 Crossref, Google Scholar
- 6 S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, Lab Chip 8, 198 (2008). 10.1039/b715524g Crossref, Google Scholar
- 7 K. Choi, A. H. C. Ng, R. Fobel, and A. R. Wheeler, Annu. Rev. Anal. Chem. 5, 413 (2012). 10.1146/annurev-anchem-062011-143028 Crossref, Google Scholar
- 8 S. K. Cho, H. Moon, and C.-J. Kim, J. Microelectromech. Syst. 12, 70 (2003). 10.1109/JMEMS.2002.807467 Crossref, Google Scholar
- 9 E. K. Sackmann, A. L. Fulton, and D. J. Beebe, Nature 507, 181 (2014). 10.1038/nature13118 Crossref, Google Scholar
- 10 D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Angew. Chem., Int. Ed. 45, 2556 (2006). 10.1002/anie.200503540 Crossref, Google Scholar
- 11 A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. deMello, Lab Chip 8, 1244 (2008). 10.1039/b806405a Crossref, Google Scholar
- 12 M. J. Jebrail, M. S. Bartsch, and K. D. Patel, Lab Chip 12, 2452 (2012). 10.1039/c2lc40318h Crossref, Google Scholar
- 13 K. Shimizu, H. Araki, K. Sakata, W. Tonomura, M. Hashida, and S. Konishi, J. Biosci. Bioeng. 119, 212 (2015). 10.1016/j.jbiosc.2014.07.003 Crossref, Google Scholar
- 14 F. L. Geyer, E. Ueda, U. Liebel, N. Grau, and P. A. Levkin, Angew. Chem., Int. Ed. 50, 8424 (2011). 10.1002/anie.201102545 Crossref, Google Scholar
- 15 W. C. Nelson and C.-J. ‘CJ’ Kim, J. Adhes. Sci. Technol. 26, 1747 (2012). 10.1163/156856111X599562 Crossref, Google Scholar
- 16 S. K. Cho, Y. Zhao, and C.-J. “CJ” Kim, Lab Chip 7, 490 (2007). 10.1039/b615665g Crossref, Google Scholar
- 17 H. Maeda, T. Kobayashi, and S. Konishi, Jpn. J. Appl. Phys. 56, 06GN09 (2017). 10.7567/JJAP.56.06GN09 Crossref, Google Scholar
- 18 S. Konishi, Y. Higuchi, and A. Tamayori, Sens. Actuators B 370, 132435 (2022). 10.1016/j.snb.2022.132435 Crossref, Google Scholar
- 19 A. A. Popova, S. M. Schillo, K. Demir, E. Ueda, A. Nesterov-Mueller, and P. A. Levkin, Adv. Mater. 27, 5217 (2015). 10.1002/adma.201502115 Crossref, Google Scholar
- 20 H. Maeda, C. Ohya, T. Matsuyoshi, T. Kobayashi, and S. Konishi, 2017 19th Int. Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, p. 115. 10.1109/TRANSDUCERS.2017.7994001 Crossref, Google Scholar
- 21 S. Konishi, C. Ohya, and T. Yamada, Sci. Rep. 11, 12355 (2021). 10.1038/s41598-021-91219-x Crossref, Google Scholar
- 22 S. Bono and S. Konishi, Sci. Rep. 13, 9428 (2023). 10.1038/s41598-023-36516-3 Crossref, Google Scholar
- 23 S. Bono, K. Sakai, and S. Konishi, Sci. Rep. 13, 11169 (2023). 10.1038/s41598-023-38299-z Crossref, Google Scholar
- 24 S. Bono, R. Takahashi, and S. Konishi, Phys. Rev. Appl. 16, 054044 (2021). 10.1103/PhysRevApplied.16.054044 Crossref, Google Scholar
- 25 S. Bono, Y. Miyata, and S. Konishi, Jpn. J. Appl. Phys. 62, 017003 (2023). 10.35848/1347-4065/acb51e Crossref, Google Scholar
- 26 P. M. Reis, S. Jung, J. M. Aristoff, and R. Stocker, Science 330, 1231 (2010). 10.1126/science.1195421 Crossref, Google Scholar