J. Phys. Soc. Jpn. 92, 104802 (2023) [5 Pages]
FULL PAPERS

Volume Control of Droplets in Vertical Contact-Separation Process Using Radius Difference of Solid–Liquid Interface on Substrate

+ Affiliations
1Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan2Ritsumeikan Advanced Research Academy, Kyoto 604-8502, Japan3Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan4Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

We investigated the contact-separation behavior of micro fluids, which is an efficient candidate for dispensing mechanisms that can replace pipetting in biochemical assays. During the Vertical contact-separation process (VCSP) of droplets, gravity causes a volume difference, ΔV. To solve this problem, we designed the radius difference of the solid–liquid interface, δR, and proposed to manipulate droplets against gravity. Systematic observations showed that the ΔV monotonically decreased with an increase in the δR, and the droplet volume was maintained (ΔV = 0) at a critical δR*. This behavior quantitatively correlates with a theoretical model based on the force balance between gravity and surface tension under asymmetric boundary conditions. Thus, after the VCSP, the ΔV was maintained at zero and the arbitrary volume of droplets was controlled using the δR. The results showed that the proposed mechanism can suppress the ΔV and quantitatively control the droplet volume. This study contributes to the three-dimensional and accurate manipulation of droplets.

©2023 The Physical Society of Japan

References

  • 1 P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004). CrossrefGoogle Scholar
  • 2 R. B. Fair, Microfluid. Nanofluid. 3, 245 (2007). 10.1007/s10404-007-0161-8 CrossrefGoogle Scholar
  • 3 D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, Chem. Soc. Rev. 39, 1153 (2010). 10.1039/b820557b CrossrefGoogle Scholar
  • 4 K. Hattori, H. Wada, Y. Makanae, S. Fujita, and S. Konishi, IEEJ Trans. Electr. Electron. Eng. 11, S123 (2016). 10.1002/tee.22344 CrossrefGoogle Scholar
  • 5 H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004). 10.1146/annurev.fluid.36.050802.122124 CrossrefGoogle Scholar
  • 6 S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, Lab Chip 8, 198 (2008). 10.1039/b715524g CrossrefGoogle Scholar
  • 7 K. Choi, A. H. C. Ng, R. Fobel, and A. R. Wheeler, Annu. Rev. Anal. Chem. 5, 413 (2012). 10.1146/annurev-anchem-062011-143028 CrossrefGoogle Scholar
  • 8 S. K. Cho, H. Moon, and C.-J. Kim, J. Microelectromech. Syst. 12, 70 (2003). 10.1109/JMEMS.2002.807467 CrossrefGoogle Scholar
  • 9 E. K. Sackmann, A. L. Fulton, and D. J. Beebe, Nature 507, 181 (2014). 10.1038/nature13118 CrossrefGoogle Scholar
  • 10 D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Angew. Chem., Int. Ed. 45, 2556 (2006). 10.1002/anie.200503540 CrossrefGoogle Scholar
  • 11 A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. deMello, Lab Chip 8, 1244 (2008). 10.1039/b806405a CrossrefGoogle Scholar
  • 12 M. J. Jebrail, M. S. Bartsch, and K. D. Patel, Lab Chip 12, 2452 (2012). 10.1039/c2lc40318h CrossrefGoogle Scholar
  • 13 K. Shimizu, H. Araki, K. Sakata, W. Tonomura, M. Hashida, and S. Konishi, J. Biosci. Bioeng. 119, 212 (2015). 10.1016/j.jbiosc.2014.07.003 CrossrefGoogle Scholar
  • 14 F. L. Geyer, E. Ueda, U. Liebel, N. Grau, and P. A. Levkin, Angew. Chem., Int. Ed. 50, 8424 (2011). 10.1002/anie.201102545 CrossrefGoogle Scholar
  • 15 W. C. Nelson and C.-J. ‘CJ’ Kim, J. Adhes. Sci. Technol. 26, 1747 (2012). 10.1163/156856111X599562 CrossrefGoogle Scholar
  • 16 S. K. Cho, Y. Zhao, and C.-J. “CJ” Kim, Lab Chip 7, 490 (2007). 10.1039/b615665g CrossrefGoogle Scholar
  • 17 H. Maeda, T. Kobayashi, and S. Konishi, Jpn. J. Appl. Phys. 56, 06GN09 (2017). 10.7567/JJAP.56.06GN09 CrossrefGoogle Scholar
  • 18 S. Konishi, Y. Higuchi, and A. Tamayori, Sens. Actuators B 370, 132435 (2022). 10.1016/j.snb.2022.132435 CrossrefGoogle Scholar
  • 19 A. A. Popova, S. M. Schillo, K. Demir, E. Ueda, A. Nesterov-Mueller, and P. A. Levkin, Adv. Mater. 27, 5217 (2015). 10.1002/adma.201502115 CrossrefGoogle Scholar
  • 20 H. Maeda, C. Ohya, T. Matsuyoshi, T. Kobayashi, and S. Konishi, 2017 19th Int. Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, p. 115. 10.1109/TRANSDUCERS.2017.7994001 CrossrefGoogle Scholar
  • 21 S. Konishi, C. Ohya, and T. Yamada, Sci. Rep. 11, 12355 (2021). 10.1038/s41598-021-91219-x CrossrefGoogle Scholar
  • 22 S. Bono and S. Konishi, Sci. Rep. 13, 9428 (2023). 10.1038/s41598-023-36516-3 CrossrefGoogle Scholar
  • 23 S. Bono, K. Sakai, and S. Konishi, Sci. Rep. 13, 11169 (2023). 10.1038/s41598-023-38299-z CrossrefGoogle Scholar
  • 24 S. Bono, R. Takahashi, and S. Konishi, Phys. Rev. Appl. 16, 054044 (2021). 10.1103/PhysRevApplied.16.054044 CrossrefGoogle Scholar
  • 25 S. Bono, Y. Miyata, and S. Konishi, Jpn. J. Appl. Phys. 62, 017003 (2023). 10.35848/1347-4065/acb51e CrossrefGoogle Scholar
  • 26 P. M. Reis, S. Jung, J. M. Aristoff, and R. Stocker, Science 330, 1231 (2010). 10.1126/science.1195421 CrossrefGoogle Scholar