- Full text:
- PDF (eReader) / PDF (Download) (6529 kB)
The enhancement of the parity-violating energy difference (PVED) by electronic excitation is studied for H2X2 (X = O, S, Se, Te), CHFClBr, CHFClI, and CHFBrI. To clarify the enhancement mechanism, the dihedral angle dependence of the PVED of H2X2 in excited states is studied. If the contribution from the highest occupied molecular orbital (HOMO) to the PVED in the ground state is larger than the sum of those from all occupied orbitals, the magnitude of the PVED in the first excited state may be much larger than that of the ground state due to cancellation breaking among valence orbital contributions. This enhancement is named cancellation breaking enhancement. The PVED enhancement is also studied for CHFClBr, CHFClI, and CHFBrI in excited states, and results are consistent with the cancellation breaking enhancement. When the PVED contribution from the HOMO is larger than any other contribution, the cancellation breaking enhancement hypothesis may provide the estimate of PVED in the first excited state from the HOMO contribution.
Parity-violating energy difference (PVED) is the energy difference between an enantiomeric pair, which is induced by the weak interaction between nuclei and electrons in a molecule. PVED is studied by many groups in experimental and theoretical fields and is one subject related to the origin of homochirality in nature.1) In addition, if PVED is experimentally observed, it is the first confirmation of the imprint of the weak interaction on molecules. A subsequent comparison of the measured PVED value with theoretical prediction may constrain new physics beyond the standard model in particle physics, since many extended models have new particles contributing to the PVED. Hence, PVED may provide a new tool wherein molecules are used to investigate new physics beyond the standard model. (Recently, new physics search using chiral molecules was reported,2) even before the experimental confirmation of the parity violation in molecules.)
Thus far, PVED has not been experimentally observed, because of its small size. The tightest upper bound comes from the experiment using the CHFClBr molecule.3) In this experiment, the vibrational frequency difference between the enantiomeric pair of the molecule was measured and
The usage of molecules with large PVED, in addition to the improvement of experimental technology, is important for the observation of nonzero PVED in future experiments. The PVED of chiral molecules is predicted by quantum chemistry computations with relativistic effects. Many works5–8) have reported larger PVED values than CHFClBr, and we consider that the search for molecules with larger PVED is still important. It is known that molecules with heavy elements have large PVED values due to their large spin–orbit coupling, but computations of the PVED of these molecules require huge costs. It is difficult to exhaustively compute the PVED of molecules with heavy elements, since the number of candidate chiral molecules are tremendous. Hence, we take another route to hunt for molecules with large PVED: usage of the electronic excitation of chiral molecules.
In Ref. 9, it was proposed that the PVED of electronic excited or ionic states of a chiral molecule is significantly enhanced compared to the neutral ground state. The contributions to the PVED from valence orbitals are almost canceled out in the ground states of many chiral molecules,10,11) and the PVED is expected to be enhanced significantly if this cancellation is broken by excitation or ionization. Before this proposal, the enhancement of the PVED in electronically excited states was also proposed by Berger12) in another viewpoint. In our previous paper,13) this speculation was confirmed for H2
This paper is organized as follows. In the next section, the definition of the PVED is introduced briefly. Then, our computational method and details are described in Sect. 3. In Sect. 4, our results are presented. The dependence of the PVED on the dihedral angle of H2
The PVED is defined as twice the parity-violating energy,
In the current study, a contribution to
The expectation values of
In our computations,
Our targets for the
The evaluation of Eq. (3) requires relativistic wave functions for electrons, and the DIRAC program is used for these electronic structure computations. For computations of H2
In computations of H2
In the computations of CHFClBr, CHFClI, and CHFBrI molecules the dyall.acv2z basis set35) is adopted, and the difference in
For the distribution of nuclei, the Gaussian distribution functions are assumed.37) This distribution is used for both electronic structure computations and the evaluation of Eq. (3).
In the following, the atomic units are employed and in particular
In our previous paper,13) the magnitude of the enhancement of
In Fig. 1, the dependence of
Figure 1. (Color online)
To understand this spectrum, a contribution from each orbital is studied. Figure 2 shows
Figure 2. (Color online)
In Fig. 3, the excitation energies of H2
Figure 3. (Color online) The excitation energies as a function of dihedral angle ϕ.
In our previous work,13) it was proposed that the enhancement of
The enhancement in the first excited state is considered to be a special case of enhancement, and cancellation breaking enhancement (CBE) hypothesis is proposed in this paper. If the following four conditions are satisfied, significant PVED enhancement is derived in the first excited state and the enhanced PVED value may be roughly estimated as the
1. | The | ||||
2. | In the first excited state, the electron in the ground state HOMO is dominantly excited. | ||||
3. | Occupied orbitals in the ground state are not significantly modified by the excitation. | ||||
4. | Contributions from unoccupied orbitals to |
To check the formula evaluating
Figure 4. (Color online) Estimate of
To confirm that the effect of unoccupied orbitals is small,
Figure 5. (Color online) Improved estimate of
The electron chirality density near a Te nucleus in the ground state of H2Te2 is shown in Fig. 6. This result is derived by HF computations. The density is shown in the yz plane, where the internuclear axis is the y axis. All atoms are on the yz plane at
Figure 6. (Color online) Distribution of electron chirality density near a Te nucleus in the ground state of H2Te2.
Figure 7 shows the contribution from the HOMO to the electron chirality density near the Te nucleus in the electronic ground state of H2Te2 by HF computations. For
Figure 7. (Color online) Distribution of the HOMO contribution to the electron chirality density near a Te nucleus in the ground state of H2Te2.
Figure 8. (Color online) Distribution of the HOMO-1 contribution to the electron chirality density near a Te nucleus in the ground state of H2Te2.
To check the CBE hypothesis for other molecules, the CHFClBr molecule is studied in this section. This molecule was actually used in a PVED observational experiment.3) In addition to CHFClBr, CHFClI, and CHFBrI are also studied. These two molecules are derived by replacing the Cl or Br atom with an I atom.
Before calculating
Figure 9. (Color online) Contribution to
The result of CHFClBr in the ground state is consistent with values based on HF computations in previous works.11,38) Contributions to
The second and third conditions are considered to be satisfied and, for the first excited state, we confirmed that electron excitation dominantly comes from the HOMO in our EOM-CCSD computations. Hence, the fourth condition that the matrix element of
Since the conditions of the CBE hypothesis are satisfied, the PVED enhancement is studied for these molecules. The PVED in excited states calculated by the EOM-CCSD method is shown in Tables I, II, and III. The adopted values of
|
|
|
As noted in Sect. 3, a loose convergence threshold is used for EOM-CCSD computations of excited states. Since the energy difference by the perturbation is
Figure 10. (Color online) Dependence of the energy difference between
|
|
Since the conditions of the CBE hypothesis are satisfied and the enhancement of
Lastly, the dependence on computational conditions is studied using CHFClBr as an example. The value of
In this paper, we have studied the
We believe that PVED enhancement by the CBE hypothesis occurs for many other chiral molecules. This enhancement mechanism may be a hint for choosing a chiral molecule for future experiments used to observe PVED. For example, the measurement of the vibrational frequency difference between two enantiomers of a chiral molecule in excited states may be a candidate for future experiments. The precise measurement of the excitation energy difference between an enantiomeric pair is also confirmation of the existence of PVED. In this paper, molecular structures of CHFClBr, CHFClI, and CHFBrI in excited states are chosen to be the same as the ground state. Nevertheless, these molecules are not considered to be achiral in excited states. In optimized structures, the PVED may not be enhanced significantly, but we expect that large PVED enhancement is realized in the structures. The investigation of the PVED in the optimized structure of an excited state is important for actual experimental planning. For a molecule whose structure in the first excited state is not so different from that in the ground state, the PVED enhancement in the CBE hypothesis is available for future experiments.
Acknowledgments
This work was supported by Grants-in-Aid for Scientific Research (17K04982, 21H00072, and 22K12060). A.S. acknowledges financial support from the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 20K22553 and 21K14643. The work of N.K. was supported by JST SPRING, Grant Number JPMJSP2110. In this research work we used the supercomputer of ACCMS, Kyoto University.
References
- 1 For example, see U. Meierhenrich, Amino Acids and the Asymmetry of Life (Springer, Berlin, 2008). Crossref, Google Scholar
- 2 K. Gaul, M. G. Kozlov, T. A. Isaev, and R. Berger, Phys. Rev. Lett. 125, 123004 (2020); 10.1103/PhysRevLett.125.123004 Crossref;, Google ScholarK. Gaul, M. G. Kozlov, T. A. Isaev, and R. Berger, Phys. Rev. A 102, 032816 (2020). 10.1103/PhysRevA.102.032816 Crossref, Google Scholar
- 3 Ch. Daussy, T. Marrel, A. Amy-Klein, C. T. Nguyen, Ch. J. Bordé, and Ch. Chardonnet, Phys. Rev. Lett. 83, 1554 (1999); 10.1103/PhysRevLett.83.1554 Crossref;, Google ScholarM. Ziskind, C. Daussy, T. Marrel, and Ch. Chardonnet, Eur. Phys. J. D 20, 219 (2002). 10.1140/epjd/e2002-00133-0 Crossref, Google Scholar
- 4 V. S. Letokhov, Phys. Lett. A 53, 275 (1975). 10.1016/0375-9601(75)90064-X Crossref, Google Scholar
- 5 M. Wormit, M. Olejniczak, A. Deppenmeier, A. Borschevsky, T. Saue, and P. Schwerdtfeger, Phys. Chem. Chem. Phys. 16, 17043 (2014). 10.1039/C4CP01904K Crossref, Google Scholar
- 6 P. Schwerdtfeger, J. K. Laerdahl, and C. Chardonnet, Phys. Rev. A 65, 042508 (2002). 10.1103/PhysRevA.65.042508 Crossref, Google Scholar
- 7 F. D. Montigny, R. Bast, A. S. P. Gomes, G. Pilet, N. Vanthuyne, C. Roussel, L. Guy, P. Schwerdtfeger, T. Saue, and J. Crassous, Phys. Chem. Chem. Phys. 12, 8792 (2010); 10.1039/b925050f Crossref;, Google ScholarN. Saleh, S. Zrig, T. Roisnel, L. Guy, R. Bast, T. Saue, B. Darquié, and J. Crassous, Phys. Chem. Chem. Phys. 15, 10952 (2013). 10.1039/c3cp50199j Crossref, Google Scholar
- 8 F. Faglioni and P. Lazzeretti, Phys. Rev. A 67, 032101 (2003); 10.1103/PhysRevA.67.032101 Crossref;, Google ScholarR. Berger and J. L. Stuber, Mol. Phys. 105, 41 (2007). 10.1080/00268970601126759 Crossref, Google Scholar
- 9 M. Senami and K. Ito, Phys. Rev. A 99, 012509 (2019). 10.1103/PhysRevA.99.012509 Crossref, Google Scholar
- 10 L. Wiesenfeld, Mol. Phys. 64, 739 (1988); 10.1080/00268978800100523 Crossref;, Google ScholarJ. K. Laerdahl and P. Schwerdtfeger, Phys. Rev. A 60, 4439 (1999). 10.1103/PhysRevA.60.4439 Crossref, Google Scholar
- 11 P. Schwerdtfeger, T. Saue, J. N. P. van Stralen, and L. Visscher, Phys. Rev. A 71, 012103 (2005). 10.1103/PhysRevA.71.012103 Crossref, Google Scholar
- 12 R. Berger, Phys. Chem. Chem. Phys. 5, 12 (2003). 10.1039/b209457f Crossref, Google Scholar
- 13 N. Kuroda, T. Oho, M. Senami, and A. Sunaga, Phys. Rev. A 105, 012820 (2022). 10.1103/PhysRevA.105.012820 Crossref, Google Scholar
- 14 J. K. Laerdahl, P. Schwerdtfeger, and H. M. Quiney, Phys. Rev. Lett. 84, 3811 (2000); 10.1103/PhysRevLett.84.3811 Crossref;, Google ScholarM. Quack and J. Stohner, Phys. Rev. Lett. 84, 3807 (2000); 10.1103/PhysRevLett.84.3807 Crossref;, Google ScholarR. G. Viglione, R. Zanasi, P. Lazzeretti, and A. Ligabue, Phys. Rev. A 62, 052516 (2000); 10.1103/PhysRevA.62.052516 Crossref;, Google ScholarB. Darquié, C. Stoeffler, S. Zrig, J. Crassous, P. Soulard, P. Asselin, T. R. Huet, L. Guy, R. Bast, T. Saue, P. Schwerdtfeger, A. Shelkovnikov, C. Daussy, A. Amy-Klein, and C. Chardonnet, Chirality 22, 870 (2010). 10.1002/chir.20911 Crossref, Google Scholar
- 15 R. L. Workman (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022). 10.1093/ptep/ptac097 Crossref, Google Scholar
- 16 For example, see J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964). Google Scholar
- 17 R. Bast, A. Koers, A. S. P. Gomes, M. Iliaš, L. Visscher, P. Schwerdtfeger, and T. Saue, Phys. Chem. Chem. Phys. 13, 864 (2011). 10.1039/C0CP01483D Crossref, Google Scholar
- 18 R. A. Hegstrom, D. W. Rein, and P. G. H. Sandars, J. Chem. Phys. 73, 2329 (1980); 10.1063/1.440383 Crossref;, Google ScholarA. Bakasov, T.-K. Ha, and M. Quack, J. Chem. Phys. 109, 7263 (1998). 10.1063/1.477360 Crossref, Google Scholar
- 19 J. A. Pople, J. W. McIver, and N. S. Ostlund, J. Chem. Phys. 49, 2960 (1968). 10.1063/1.1670536 Crossref, Google Scholar
- 20 F. Pawłowski, J. Olsen, and P. Jørgensen, J. Chem. Phys. 142, 114109 (2015). 10.1063/1.4913364 Crossref, Google Scholar
- 21 P. Norman, K. Ruud, and T. Saue, Principles and Practices of Molecular Properties (Wiley, Chichester, U.K., 2018). Crossref, Google Scholar
- 22 A. Shee, T. Saue, L. Visscher, and A. S. P. Gomes, J. Chem. Phys. 149, 174113 (2018).10.1063/1.5053846 Crossref, Google Scholar
- 23 A. Shee, L. Visscher, and T. Saue, J. Chem. Phys. 145, 184107 (2016). 10.1063/1.4966643 Crossref, Google Scholar
- 24 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision C.01 (Gaussian Inc., Wallingford, CT, 2016). Google Scholar
- 25 A. D. Becke, J. Chem. Phys. 98, 5648 (1993). 10.1063/1.464913 Crossref, Google Scholar
- 26 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). 10.1103/PhysRevB.37.785 Crossref, Google Scholar
- 27 T. H. Dunning, Jr. and P. J. Hay, in Methods of Electronic Structure Theory, ed. H. F. Schaefer (Plenum, New York, 1977) Modern Theoretical Chemistry, Vol. 3, p. 1. Crossref, Google Scholar
- 28 A. Bergner, M. Dolg, W. Kuechle, H. Stoll, and H. Preuss, Mol. Phys. 80, 1431 (1993). 10.1080/00268979300103121 Crossref, Google Scholar
- 29 DIRAC, a relativistic ab initio electronic structure program, Release DIRAC19 (2019), written by A. S. P. Gomes, T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, with contributions from I. A. Aucar, V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegård, T. Helgaker, B. Helmich-Paris, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Sałek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (available at http://dx.doi.org/10.5281/zenodo.3572669, see also http://www.diracprogram.org). Google Scholar
- 30 T. Saue, R. Bast, A. S. P. Gomes, H. J. A. Jensen, L. Visscher, I. A. Aucar, R. Di Remigio, K. G. Dyall, E. Eliav, E. Fasshauer, T. Fleig, L. Halbert, E. D. Hedegård, B. Helmich-Paris, M. Iliaš, C. R. Jacob, S. Knecht, J. K. Lærdahl, M. L. Vidal, M. K. Nayak, M. Olejniczak, J. M. H. Olsen, M. Pernpointner, B. Senjean, A. Shee, A. Sunaga, and J. N. P. van Stralen, J. Chem. Phys. 152, 204104 (2020). 10.1063/5.0004844 Crossref, Google Scholar
- 31 DIRAC, a relativistic ab initio electronic structure program, Release DIRAC21 (2021), written by R. Bast, A. S. P. Gomes, T. Saue, L. Visscher, and H. J. Aa. Jensen, with contributions from I. A. Aucar, V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegård, T. Helgaker, B. Helmich-Paris, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S. Lee, N. H. List, H. S. Nataraj, M. K. Nayak, P. Norman, G. Olejniczak, J. Olsen, J. M. H. Olsen, A. Papadopoulos, Y. C. Park, J. K. Pedersen, M. Pernpointner, J. V. Pototschnig, R. di Remigio, M. Repisky, K. Ruud, P. Sałek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, A. Sunaga, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, O. Visser, T. Winther, and S. Yamamoto (available at http://dx.doi.org/10.5281/zenodo.4836496, see also http://www.diracprogram.org). Google Scholar
- 32 J. Sikkema, L. Visscher, T. Saue, and M. Iliaš, J. Chem. Phys. 131, 124116 (2009). 10.1063/1.3239505 Crossref, Google Scholar
- 33 L. Visscher, K. G. Dyall, and T. J. Lee, Int. J. Quantum Chem. 56, 411 (1995). 10.1002/qua.560560844 Crossref, Google Scholar
- 34 L. Visscher, T. J. Lee, and K. G. Dyall, J. Chem. Phys. 105, 8769 (1996). 10.1063/1.472655 Crossref, Google Scholar
- 35 K. G. Dyall, Theor. Chem. Acc. 108, 335 (2002); 10.1007/s00214-002-0388-0 Crossref;, Google ScholarK. G. Dyall, Theor. Chem. Acc. 115, 441 (2006); 10.1007/s00214-006-0126-0 Crossref;, Google ScholarK. G. Dyall, J. Phys. Chem. A 113, 12638 (2009); 10.1021/jp905057q Crossref;, Google ScholarK. G. Dyall, Theor. Chem. Acc. 135, 128 (2016). 10.1007/s00214-016-1884-y Crossref, Google Scholar
- 36 M. Senami, K. Ichikawa, A. Tachibana, QEDynamics (https://github.com/mfukudaQED/QEDalpha); Google ScholarK. Ichikawa, M. Fukuda, and A. Tachibana, Int. J. Quantum Chem. 113, 190 (2013); 10.1002/qua.24087 Crossref;, Google ScholarM. Senami, T. Miyazato, S. Takada, Y. Ikeda, and A. Tachibana, J. Phys.: Conf. Ser. 454, 012052 (2013); 10.1088/1742-6596/454/1/012052 Crossref;, Google ScholarM. Senami, Y. Ogiso, T. Miyazato, F. Yoshino, Y. Ikeda, and A. Tachibana, Trans. Mater. Res. Soc. Jpn. 38, 535 (2013). 10.14723/tmrsj.38.535 Crossref, Google Scholar
- 37 L. Visscher and K. G. Dyall, At. Data Nucl. Data Tables 67, 207 (1997). 10.1006/adnd.1997.0751 Crossref, Google Scholar
- 38 C. Thierfelder, G. Rauhut, and P. Schwerdtfeger, Phys. Rev. A 81, 032513 (2010). 10.1103/PhysRevA.81.032513 Crossref, Google Scholar
- 39 T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989). 10.1063/1.456153 Crossref, Google Scholar
- 40 X. Yuan, L. Visscher, and A. S. P. Gomes, J. Chem. Phys. 156, 224108 (2022). 10.1063/5.0087243 Crossref, Google Scholar