- Full text:
- PDF (eReader) / PDF (Download) (162 kB)
We develop a mean-field theory for Bose–Einstein condensation of spin-1 atoms with internal degrees of freedom. It is applicable to nonuniform systems at finite temperatures with a plausible feature of satisfying the Hugenholtz–Pines theorem and various conservation laws simultaneously. Using it, we clarify thermodynamic properties and the excitation spectra of a uniform gas. The condensate is confirmed to remain in the same internal state from T =0 up to T c for both antiferromagnetic and ferromagnetic interactions. The excitation spectra of the antiferromagnetic (ferromagnetic) interaction are found to have only a single gapless mode, contrary to the prediction of the Bogoliubov theory where three (two) of them are gapless. We present a detailed discussion on those single-particle excitations in connection with the collective excitations.
References
- 1 D. M.Stamper-Kurn :Phys. Rev. Lett. 80 (1998) 2027. Crossref, Google Scholar
- 2 A.Görlitz :Phys. Rev. Lett. 90 (2003) 090401. Crossref, Google Scholar
- 3 M. D.Barrett :Phys. Rev. Lett. 87 (2001) 010404. Crossref, Google Scholar
- 4 M.Erhard :Phys. Rev. A 70 (2004) 031602. Crossref, Google Scholar
- 5 M.-S.Chang :Phys. Rev. Lett. 92 (2004) 140403. Crossref, Google Scholar
- 6 H.Schmaljohann :Phys. Rev. Lett. 92 (2004) 040402. Crossref, Google Scholar
- 7 N. N.Bogoliubov: J. Phys. (Moscow) 11 (1947) 23. Google Scholar
- 8 A. L.Fetter:Ann. Phys. (N.Y.) 70 (1972) 67. Crossref, Google Scholar
- 9 E. P.Gross: Nuovo Cimento 20 (1961) 454. Crossref, Google Scholar
- 10 E. P.Gross:J. Math. Phys. 4 (1963) 195. Crossref, Google Scholar
- 11 L. P.Pitaevskii: Sov. Phys. JETP 13 (1961) 451. Google Scholar
- 12 N. M.Hugenholtz and D.Pines:Phys. Rev. 116 (1959) 489. Crossref, Google Scholar
- 13 N.Shohno:Prog. Theor. Phys. 31 (1964) 553; N.Shohno:Prog. Theor. Phys. 32 (1964) 370. Crossref, Google Scholar
- 14 T.Kita:J. Phys. Soc. Jpn. 75 (2006) 044603. Link, Google Scholar
- 15 P. C.Hohenberg and P. C.Martin:Ann. Phys. (N.Y.) 34 (1965) 291. Crossref, Google Scholar
- 16 T.Ohmi and K.Machida:J. Phys. Soc. Jpn. 67 (1998) 1822. Link, Google Scholar
- 17 T.-L.Ho:Phys. Rev. Lett. 81 (1998) 742. Crossref, Google Scholar
- 18 C. K.Law :Phys. Rev. Lett. 81 (1998) 5257. Crossref, Google Scholar
- 19 H.Pu :Phys. Rev. A 60 (1999) 1463. Crossref, Google Scholar
- 20 W.Zhang :Phys. Rev. Lett. 95 (2005) 180403. Crossref, Google Scholar
- 21 J.Mur-Petit :Phys. Rev. A 73 (2006) 013629. Crossref, Google Scholar
- 22 W.-J.Huang and S.-C.Gou:Phys. Rev. A 59 (1999) 4608. Crossref, Google Scholar
- 23 T.Isoshima :J. Phys. Soc. Jpn. 69 (2000) 3864. Link, Google Scholar
- 24 W.Zhang :Phys. Rev. A 70 (2004) 043611. Crossref, Google Scholar
- 25 T.Kita:J. Phys. Soc. Jpn. 74 (2005) 1891; T.Kita:J. Phys. Soc. Jpn. 74 (2005) 3397. Link, Google Scholar
- 26 A. L.Fetter and J. D.Walecka,Quantum Theory of Many Particle Systems (Dover, 2003). Google Scholar
- 27 L. M.Luttinger and L. C.Ward:Phys. Rev. 118 (1960) 1417. Crossref, Google Scholar
- 28 J.Gavoret and P.Nozières:Ann. Phys. (N.Y.) 28 (1964) 349. Crossref, Google Scholar
- 29 P.Szépfalusy and I.Kondor:Ann. Phys. (N.Y.) 82 (1974) 1. Crossref, Google Scholar
- 30 P.Szépfalusy and G.Szirmai:Phys. Rev. A 65 (2002) 043602. Crossref, Google Scholar
- 31 N. V.Popov:Functional Integrals and Collective Excitations (Cambridge Univ. Press, Cambridge, 1987) Sect. 5. Google Scholar