- Full text:
- PDF (eReader) / PDF (Download) (735 kB)
We calculated the electronic and lattice properties of 8H-, 10H-, 12H-, and 18H-SiC polytypes, which are sp 3 -bonded compounds. A tetrahedral structure is formed by Si and C atoms in their hexagonal polytypes. Their possible symmetries are P 6 3 m c and P 3 m 1. All possible structures in the 8H polytype, six structures in the 10H polytype, seven structures in the 12H polytype, and one structure in the 18H polytype were considered. The calculated hexagonalities ( H ) are 16.7, 20, 25, 33.3, 40, 44.4, 50, 60, 66.7, 75, 80, and 83.3%. Hexagonality is a ratio of the number of hexagonal ( h ) characters and total number of cubic ( c ) and h characters in a unit cell. We calculated their electronic properties [i.e., electronic band structures, band gaps, valence band maximum (VBM), and conduction band minimum (CBM)]. All the calculated electronic band structures are nonmetallic and the band gaps are indirect. The lattice properties (i.e., lattice constants and internal coordinates of atoms in the unit cell) were optimized by the total energy pseudopotential method based on the local density approximation (LDA). There is no clear trend in the order of the total energies for the SiC polytype structures. The total energies of three 10H-SiC polytype structures are slightly lower than that of 4H-SiC. One of them, whose stacking sequence is ABCACBCACB (ABC notation) and whose H = 40%, is lower by 2.4 meV/Si 2 C 2 than 4H-SiC, and lowest in the SiC polytype structures calculated by LDA. The Zhdanov notation of 10H-SiC(ABCACBCACB) is “3322”. As for the 2H-, 3C-, 4H-, 6H-, 8H-, and 10H-SiC polytypes, we obtained their electronic and lattice properties using the total energy pseudopotential method based on the generalized gradient approximation (GGA) for comparison with the LDA results.
References
- 1 A. R.Verma and P.Krishna:Polymorphism and Polytypism in Crystals (Wiley, New York, 1966). Google Scholar
- 2 International Table for Crystallography, ed. A. J. C.Wilson and E.Prince (Kluwer, Dordrecht, 2004) Vol. C, Chap. 9.2, p. 744. Google Scholar
- 3 G. C.Trigunayat and G. K.Chadha:Phys. Status Solidi A 4 (1971) 9. Crossref, Google Scholar
- 4 G. C.Trigunayat: Solid State Ionics 48 (1991) 3. Crossref, Google Scholar
- 5 H.Schulz and K. H.Thiemann:Solid State Commun. 32 (1979) 783. Crossref, Google Scholar
- 6 Physics of Group-IV Elements and III–V Compounds, ed. O.Madelung, M.Schulz, and M.Weiss (Springer, Berlin, 1982) Landolt–Börnstein, New Series, Group III, Vol. 17, Pt. a. Google Scholar
- 7 R. W. G.Wyckoff:Crystal Structure (Wiley, New York, 1963). Google Scholar
- 8 A. H.Gomes de Mesquita: Acta Crystallogr. 23 (1967) 610. Crossref, Google Scholar
- 9 L. S.Ramsdell and J. A.Kohn: Acta Crystallogr. 5 (1952) 215. Crossref, Google Scholar
- 10 L. S.Ramsdell and J. A.Kohn: Acta Crystallogr. 4 (1951) 111. Crossref, Google Scholar
- 11 S.Miyano, S.Sueno, M.Ohmasa, and T.Fujii: Acta Crystallogr. A 38 (1982) 477. Crossref, Google Scholar
- 12 Y.Peng, Z.Meng, C.Zhong, J.Lu, W.Yu, and Y.Qian: Mater. Res. Bull. 36 (2001) 1659. Crossref, Google Scholar
- 13 I. A.Salama, N. R.Quick, and A.Kar:J. Mater. Sci. 40 (2005) 3969. Crossref, Google Scholar
- 14 C.Cheng, R. J.Needs, and V.Heine:J. Phys. C 21 (1988) 1049. Crossref, Google Scholar
- 15 C.Cheng, V.Heine, and R. J.Needs:J. Phys.: Condens. Matter 2 (1990) 5115. Crossref, Google Scholar
- 16 P.Käckell, B.Wenzien, and F.Bechstedt:Phys. Rev. B 50 (1994) 10761. Crossref, Google Scholar
- 17 C. H.Park, B.Cheong, K.Lee, and K. J.Chang:Phys. Rev. B 49 (1994) 4485. Crossref, Google Scholar
- 18 P.Käckell, B.Wenzien, and F.Bechstedt:Phys. Rev. B 50 (1994) 17037. Crossref, Google Scholar
- 19 K.Karch, F.Bechstedt, P.Pavone, and D.Strauch:Phys. Rev. B 53 (1996) 13400. Crossref, Google Scholar
- 20 C.Persson and U.Lindefelt:J. Appl. Phys. 82 (1997) 5496. Crossref, Google Scholar
- 21 W. R. L.Lambrecht, S.Limpijumnong, S. N.Rashkeev, and B.Segall:Phys. Status Solidi B 202 (1997) 5. Crossref, Google Scholar
- 22 Z.Jiang, X.Xu, H.Wu, F.Zhang, and Z.Jin:Solid State Commun. 123 (2002) 263. Crossref, Google Scholar
- 23 M. C.Righi, C. A.Pignedoli, G.Borghi, R.Di Felice, C. M.Bertoni, and A.Catellani:Phys. Rev. B 66 (2002) 045320. Crossref, Google Scholar
- 24 Z.Liu and J.Ni:J. Phys.: Condens. Matter 17 (2005) 5355. Crossref, Google Scholar
- 25 W. Y.Ching, Y.Xu, P.Rulis, and L.Ouyang: Mater. Sci. Eng. A 422 (2006) 147. Crossref, Google Scholar
- 26 K.Karch, G.Wellenhofer, P.Pavone, U.Rössler, and D.Strauch:Proc. 22nd Int. Conf. Physics of Semiconductors, ed. D.Lockwood (World Scientific, Singapore, 1995) p. 401. Google Scholar
- 27 M. J.Rutter and V.Heine:J. Phys.: Condens. Matter 9 (1997) 8213. Crossref, Google Scholar
- 28 N.Bernstein, H. J.Gotsis, D. A.Papaconstantopoulos, and M. J.Mehl:Phys. Rev. B 71 (2005) 075203. Crossref, Google Scholar
- 29 G. B.Dubrovskii, A. A.Lepneva, and E. I.Radovanova:Phys. Status Solidi B 57 (1973) 423. Crossref, Google Scholar
- 30 V. I.Sankin and A. A.Lepneva: Semiconductors 34 (2000) 803. Crossref, Google Scholar
- 31 Z. G.Wang, J.Liu, Z. Y.Zhu, Y. F.Jin, E. Q.Xie, T. W.Zhu, X. X.Chen, Y. M.Sun, and M. D.Hou: Nucl. Instrum. Methods Phys. Res., Sect. B 191 (2002) 396. Crossref, Google Scholar
- 32 W. J.Choyke, D. R.Hamilton, and L.Patrick:Phys. Rev. 133 (1964) A1163. Crossref, Google Scholar
- 33 S. Yu.Davydov, A. A.Lebedev, and O. V.Posrednik: Semiconductors 39 (2005) 1391. Crossref, Google Scholar
- 34 A.Laref and S.Laref:Phys. Status Solidi B 245 (2008) 89. Crossref, Google Scholar
- 35 M.Marinova, T.Robert, S.Juillaguet, I.Tsiaoussis, N.Frangis, E.Polychroniadis, J.Camassel, and T.Chassagne:Phys. Status Solidi A 206 (2009) 1924. Crossref, Google Scholar
- 36 W. H.Backes, P. A.Bobbert, and W.van Haeringen:Phys. Rev. B 49 (1994) 7564. Crossref, Google Scholar
- 37 S.Limpijumnong and W. R. L.Lambrecht:Phys. Rev. B 57 (1998) 12017. Crossref, Google Scholar
- 38 G. B.Dubrovskii and A. A.Lepneva: Sov. Phys. Semicond. 17 (1983) 963. Google Scholar
- 39 C. B.Liu, Z. G.Wang, H.Zang, K. F.Wei, C. F.Yao, Y. B.Sheng, Y. Z.Ma, A.Benyagoub, M.Toulemonde, and Y. F.Jin: Chin. Phys. C 32[S2] (2008) 251. Crossref, Google Scholar
- 40 F.Zeng, X.Xiong, G.Li, B.Huang, and J.Luo: Trans. Nonferrous Met. Soc. China 19 (2009) 1428. Crossref, Google Scholar
- 41 T.Hatayama, H.Koketsu, H.Yano, and T.Fuyuki: Mater. Sci. Forum 645–648 (2010) 771. Crossref, Google Scholar
- 42 S.Christiansen, M.Albrecht, H. P.Strunk, H.Hornberger, P. M.Marquis, and J.Franks: J. Mater. Res. 11 (1996) 1934. Crossref, Google Scholar
- 43 B.Zhang, J.Li, and J.Sun: Mater. Lett. 51 (2001) 219. Crossref, Google Scholar
- 44 F.Bechstedt, P.Käckell, A.Zywietz, K.Karch, B.Adolph, K.Tenelsen, and J.Furthmüller:Phys. Status Solidi B 202 (1997) 35. Crossref, Google Scholar
- 45 F.Bechstedt and P.Käckell:Phys. Rev. Lett. 75 (1995) 2180. Crossref, Google Scholar
- 46 F.Bechstedt: Mater. Sci. Forum 264–268 (1998) 265. Crossref, Google Scholar
- 47 Z.Inoue, Y.Inomata, H.Tanaka, and H.Komatsu:J. Mater. Sci. 17 (1982) 3197. Crossref, Google Scholar
- 48 K.Kobayashi and S.Komatsu:J. Phys. Soc. Jpn. 77 (2008) 084703, and references therein for hexagonality. Link, Google Scholar
- 49 U.von Barth and L.Hedin:J. Phys. C 5 (1972) 1629. Crossref, Google Scholar
- 50 J. P.Perdew, K.Burke, and M.Ernzerhof:Phys. Rev. Lett. 77 (1996) 3865. Crossref, Google Scholar
- 51 J. E.Iglesias: Acta Crystallogr. A 62 (2006) 178. Crossref, Google Scholar
- 52 K.Kobayashi and S.Komatsu:J. Phys. Soc. Jpn. 76 (2007) 113707. Link, Google Scholar
- 53 K.Kobayashi and S.Komatsu:J. Phys. Soc. Jpn. 78 (2009) 044706. Link, Google Scholar
- 54 K.Kobayashi and S.Komatsu: Mater. Trans. 51 (2010) 1497. Crossref, Google Scholar
- 55 P.Hohenberg and W.Kohn:Phys. Rev. 136 (1964) B864. Crossref, Google Scholar
- 56 W.Kohn and L. J.Sham:Phys. Rev. 140 (1965) A1133. Crossref, Google Scholar
- 57 G. B.Bachelet, D. R.Hamann, and M.Schlüter:Phys. Rev. B 26 (1982) 4199. Crossref, Google Scholar
- 58 N.Troullier and J. L.Martins:Phys. Rev. B 43 (1991) 1993. Crossref, Google Scholar
- 59 K.Kobayashi: Mater. Trans. 42 (2001) 2153. Crossref, Google Scholar
- 60 L.Kleinman and D. M.Bylander:Phys. Rev. Lett. 48 (1982) 1425. Crossref, Google Scholar
- 61 O. H.Nielsen and R. M.Martin:Phys. Rev. B 32 (1985) 3792. Crossref, Google Scholar
- 62 C.Cheng, V.Heine, and I. L.Jones:J. Phys.: Condens. Matter 2 (1990) 5097. Crossref, Google Scholar
- 63 A.Zywietz, K.Karch, and F.Bechstedt:Phys. Rev. B 54 (1996) 1791. Crossref, Google Scholar
- 64 S. R.Nishitani, R.Takeda, H.Ishii, Y.Yamamoto, and T.Kaneko: Nihon Kinzoku Gakkaishi 73 (2009) 566[in Japanese]. Google Scholar
- 65 J. P.Perdew, J. A.Chevary, S. H.Vosko, K. A.Jackson, M. R.Pederson, D. J.Singh, and C.Fiolhais:Phys. Rev. B 46 (1992) 6671. Crossref, Google Scholar
- 66 E.Wigner:Phys. Rev. 46 (1934) 1002. Crossref, Google Scholar
- 67 Z.Inoue:J. Mater. Sci. 17 (1982) 3189. Crossref, Google Scholar
- 68 J. P.Perdew and A.Zunger:Phys. Rev. B 23 (1981) 5048. Crossref, Google Scholar
- 69 D. M.Ceperley and B. J.Alder:Phys. Rev. Lett. 45 (1980) 566. Crossref, Google Scholar
- 70 A. D.Becke:Phys. Rev. A 38 (1988) 3098. Crossref, Google Scholar
- 71 C.Lee, W.Yang, and R. G.Parr:Phys. Rev. B 37 (1988) 785. Crossref, Google Scholar
- 72 W. F.Knippenberg: Philips Res. Rept. 18 (1963) 161. Google Scholar
- 73 Y.Inomata, M.Mitomo, Z.Inoue, and H.Tanaka: Yogyo Kyokai Shi 77 (1969) 130[in Japanese]. Crossref, Google Scholar
- 74 F.Kawamura, T.Ogura, M.Imada, M.Yoshimura, Y.Kitaoka, Y.Mori, and T.Sasaki: Mater. Lett. 62 (2008) 1048. Crossref, Google Scholar
- 75 Y.Inomata, M.Mitomo, Z.Inoue, and H.Tanaka: Yogyo Kyokai Shi 76 (1968) 355[in Japanese]. Crossref, Google Scholar
- 76 Y.Inomata, Z.Inoue, and K.Kijima: Yogyo Kyokai Shi 77 (1969) 313[in Japanese]. Crossref, Google Scholar
- 77 Y.Inomata, Z.Inoue, and M.Mitomo:J. Cryst. Growth 5 (1969) 405. Crossref, Google Scholar
- 78 Y.Inomata and Z.Inoue: Yogyo Kyokai Shi 77 (1969) 405[in Japanese]. Crossref, Google Scholar
- 79 Y.Inomata and Z.Inoue: Yogyo Kyokai Shi 78 (1970) 133[in Japanese]. Crossref, Google Scholar
- 80 Springer Handbook of Condensed Matter and Materials Data, ed. W.Martienssen and H.Warlimont (Springer, Heidelberg, 2005) Pt. 4.1.1. Crossref, Google Scholar