JPS Conf. Proc. 3, 012008 (2014) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013)
Electrical Resistivity of Single Crystalline Ce3Pd20Si6 Across the Temperature-Magnetic Field Phase Diagram
1Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
2Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
Received October 21, 2013

The heavy fermion cage compound Ce3Pd20Si6 has a cubic crystal structure with two inequivalent Ce sites. It undergoes two phase transitions, at TQ = 0.5 K and at TN = 0.31 K, attributed respectively to antiferroquadrupolar (AFQ) and to antiferromagnetic (AFM) order. Magnetization, ultrasound and specific heat investigations on single crystals revealed an anisotropic evolution of TQ with respect to the direction of an external magnetic field. Here we report electrical resistivity measurements performed on single crystalline Ce3Pd20Si6 between 0.05 and 0.65 K in magnetic fields applied along the [100] direction. We find anomalies in the residual resistivity ρ0 and the A coefficient of the electrical resistivity at the magnetic field where TQ is suppressed to zero.

©2014 The Physical Society of Japan


  • 1) Q.Si, Phys. Status Solidi B 247, 476 (2010). 10.1002/pssb.200983082 Google Scholar
  • 2) Q.Si and S.Paschen, Phys. Status Solidi B 250, 425 (2013). 10.1002/pssb.201300005 Google Scholar
  • 3) A. M.Strydom, A.Pikul, F.Steglich, and S.Paschen, J. Phys.: Conf. Ser. 51, 239 (2006). 10.1088/1742-6596/51/1/054 Google Scholar
  • 4) J.Custers, K. A.Lorenzer, M.Müller, A.Prokofiev, A.Sidorenko, H.Winkler, A. M.Strydom, Y.Shimura, T.Sakakibara, R.Yu, Q.Si, and S.Paschen, Nat. Mater. 11, 189 (2012). 10.1038/nmat3214 Google Scholar
  • 5) A. V.Gribanov, Y. D.Seropegin, and O. J.Bodak, J. Alloys Compd. 204, L9 (1994). 10.1016/0925-8388(94)90057-4 Google Scholar
  • 6) T.Goto, T.Watanabe, S.Tsuduku, H.Kobayashi, Y.Nemoto, T.Yanagisawa, M.Akatsu, G.Ano, O.Suzuki, N.Takeda, A.Doenni, and H.Kitazawa, J. Phys. Soc. Jpn. 78, 024716 (2009). 10.1143/JPSJ.78.024716[Abstract] Google Scholar
  • 7) H.Mitamura, T.Tayama, T.Sakakibara, S.Tsuduku, G.Ano, I.Ishii, M.Akatsu, Y.Nemoto, T.Goto, A.Kikkawa, and H.Kitazawa, J. Phys. Soc. Jpn. 79, 074712 (2010). 10.1143/JPSJ.79.074712[Abstract] Google Scholar
  • 8) H.Ono, T.Nakano, N.Takeda, G.Ano, M.Akatsu, Y.Nemoto, T.Goto, A.Doenni, and H.Kitazawa, J. Phys.: Condens. Matter 25, 126003 (2013). 10.1088/0953-8984/25/12/126003 Google Scholar
  • 9) A.Prokofiev, J.Custers, M.Kriegisch, S.Laumann, M.Müller, H.Sassik, R.Svagera, M.Waas, K.Neumaier, A. M.Strydom, and S.Paschen, Phys. Rev. B 80, 235107 (2009). 10.1103/PhysRevB.80.235107 Google Scholar
  • 10) A.Prokofiev and S.Paschen, Crystal Growth and Stoichiometry of Strongly Correlated Intermetallic Cerium Compounds, Modern Aspects of Bulk Crystal and Thin Film Preparation, InTech, (2012) 263.Google Scholar
  • 11) S.Paschen, M.Müller, J.Custers, M.Kriegisch, A.Prokofiev, G.Hilscher, W.Steiner, A.Pikul, F.Steglich, and A. M.Strydom, J. Magn. Magn. Mater. 316, 90 (2007). 10.1016/j.jmmm.2007.04.001 Google Scholar
  • 12) H. v.Löhneysen, A.Rosch, M.Voja, and P.Wölfle, Rev. Mod. Phys. 79, 1015 (2007). 10.1103/RevModPhys.79.1015 Google Scholar
  • 13) S.Paschen and J.Larrea J., to appear in J. Phys. Soc. Jpn. (invited paper SCES2013).Google Scholar
  • 14) M.Nakashima, S.Kirita, R.Asai, T.Kobayashi, T.Okubo, M.Yamada, A.Thamizhavel, Y.Inada, R.Settai, A.Galatanu, E.Yamamoto, T.Ebihara, and Y.Onuki, J. Phys. Cond. Mat. 15, L111 (2003). 10.1088/0953-8984/15/4/101 Google Scholar
  • 15) P. G.Niklowitz, G.Knebel, J.Flouquet, S. L.Bud’ko, and P. C.Canfield, Phys. Rev. B 73, 125101 (2006). 10.1103/PhysRevB.73.125101 Google Scholar
  • 16) K.Miyake and H.Maebashi, J. Phys. Soc. Jpn. 71, 1007 (2002). 10.1143/JPSJ.71.1007[Abstract] Google Scholar