JPS Conf. Proc. 3, 015040 (2014) [6 pages]
Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013)
Crystal Electric Field Study in Pr(Os1−xRux)4Sb12 by Raman Scattering
1Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Hiroshima 739-8521, Japan
2Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0367, Japan
3Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
4Department of Physics, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
5Institute for Advanced Materials Research, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
Received October 1, 2013

Ru concentration dependence of Raman spectra in Pr(Os1−xRux)4Sb12 was measured at low temperature, where phonon peaks due to Sb vibrations and the transition peaks between crystal electric field (CEF) levels have been observed. The CEF energy levels and parameters were determined for each x. The excitation energy between the ground and the first excited states increases from 0.69 to 5.74 meV, as x increases from 0 to 1. A discontinuity in the CEF energies and parameters has been observed at x ∼0.6, where superconducting transition temperature Tc is the minimum. This discontinuity suggests an anti-crossing of the energy between the CEF and Pr rattling mode.

©2014 The Physical Society of Japan

References

  • 1) N. A.Frederick, T. D.Do, P.-C.Ho, N. P.Butch, V. S.Zapf, and M. B.Maple, Phys. Rev. B 69, 024523 (2004). 10.1103/PhysRevB.69.024523 Google Scholar
  • 2) E. E. M.Chia, D.Vandervelde, M. B.Salamon, D.Kikuchi, H.Sugawara, and H.Sato, J. Phys.: Condens. Matter 17, L303 (2005). 10.1088/0953-8984/17/28/L01 Google Scholar
  • 3) H.Akita, G.Yoshino, and A.Ochiai, Physica B 378–380, 197 (2006). 10.1016/j.physb.2006.01.074 Google Scholar
  • 4) M. B.Maple, Z.Henkie, W. M.Yuhasz, P.-C.Ho, T.Yanagizawa, T. A.Sayles, N. P.Butch, J. R.Jeffries, and A.Pietrazko, J. Magn. Magn. Mater. 310, 182 (2007). 10.1016/j.jmmm.2006.10.508 Google Scholar
  • 5) P.-C.Ho, T.Yanagizawa, N. B.Butch, W. M.Yuhasz, C. C.Robinson, A. A.Dooraghi, and M. B.Maple, Physica B 403, 1038 (2008). 10.1016/j.physb.2007.10.085 Google Scholar
  • 6) P.-C.Ho, N. P.Butch, V. S.Zapf, T.Yanagizawa, N. A.Frederick, S. K.Kim, W. M.Yuhasz, M. B.Maple, and A. H.Lacerda, J. Phys.: Condens. Matter 20, 215226 (2008). 10.1088/0953-8984/20/21/215226 Google Scholar
  • 7) R.Miyazaki, Y.Aoki, D.Kikuchi, H.Sugawara, and H.Sato, J. Phys.: Conf. Ser. 200, 012125 (2010). 10.1088/1742-6596/200/1/012125 Google Scholar
  • 8) P.Thalmeier, Phys. Rev. B 81, 224305 (2010). 10.1103/PhysRevB.81.224305 Google Scholar
  • 9) L.Shu, W.Higemoto, Y.Aoki, A. D.Hillier, K.Ohnishi, K.Ishida, R.Kadono, A.Koda, O. O.Bernal, D. E.Maclaughlin, Y.Yunashima, Y.Yonezawa, S.Sanada, D.Kikuchi, H.Sato, H.Sugawara, T. U.Ito, and M. B.Maple, Phys. Rev. B 83, 100504(R) (2011). 10.1103/PhysRevB.83.100504 Google Scholar
  • 10) E. D.Bauer, N. A.Frederick, P.-C.Ho, V. S.Zapf, and M. B.Maple, Phys. Rev. B 65, 100506(R) (2002). 10.1103/PhysRevB.65.100506 Google Scholar
  • 11) M. B.Maple, P.-C.Ho, V. S.Zapf, N. A.Frederick, E. D.Bauer, W. M.Yuhasz, F. W.Woodward, and J. W.Lynn, J. Phys. Soc. Jpn. 71, 23 (2002). 10.1143/JPSJS.71S.23[Abstract] Google Scholar
  • 12) D. E.MacLaughlin, J. E.Sonier, R. H.Heffner, O. O.Bernal, B.-L.Young, M. S.Rose, G. D.Morris, E. D.Bauer, T. D.Do, and M. B.Maple, Phys. Rev. Lett. 89, 157001 (2002). 10.1103/PhysRevLett.89.157001 Google Scholar
  • 13) H.Kotegawa, M.Yogi, Y.Imamura, Y.Kawasaki, G.-q.Zheng, Y.Kitaoka, S.Ohsaki, H.Sugawara, Y.Aoki, and H.Sato, Phys. Rev. Lett. 90, 027001 (2003). 10.1103/PhysRevLett.90.027001 Google Scholar
  • 14) K.Izawa, Y.Nakajima, J.Goyo, Y.Matsuda, S.Osaki, H.Sugawara, H.Sato, P.Thalmeier, and K.Maki, Phys. Rev. Lett. 90, 117001 (2003). 10.1103/PhysRevLett.90.117001 Google Scholar
  • 15) Y.Aoki, A.Tsuchya, T.Kanayama, S. R.Saha, H.Sugawara, H.Sato, W.Higemoto, A.Koda, K.Ohishi, K.Nishiyama, and R.Kadono, Phys. Rev. Lett. 91, 067003 (2003). 10.1103/PhysRevLett.91.067003 Google Scholar
  • 16) M.Yogi, H.Kotegawa, Y.Imamura, G.-q.Zheng, Y.Kitaoka, H.Sugawara, and H.Sato, Phys. Rev. B 67, 180501(R) (2003). 10.1103/PhysRevB.67.180501 Google Scholar
  • 17) R.Miyazaki, to be published.Google Scholar
  • 18) N.Ogita, S.Nagai, N.Okamoto, M.Udagawa, F.Iga, M.Sera, J.Akimitsu, and S.Kunii, Phys. Rev. B 68, 224305 (2003). 10.1103/PhysRevB.68.224305 Google Scholar
  • 19) N.Ogita, M.Udagawa, S. R.Saha, H.Sato, and H.Sugawara, Physica B 378–380, 206 (2006). 10.1016/j.physb.2006.01.077 Google Scholar
  • 20) K.Takegahara, H.Harima, and A.Yanase, J. Phys. Soc. Jpn. 70, 1190 (2001). 10.1143/JPSJ.70.1190[Abstract] Google Scholar
  • 21) K. R.Lea, M. J. M.Leask, and W. P.Wolf, J. Phys. Chem. Solids 23, 1381 (1962). 10.1016/0022-3697(62)90192-0 Google Scholar
  • 22) E. A.Goremychkin, R.Osborn, E. D.Bauer, M. B.Maple, N. A.Frederick, W. M.Yuhasz, F. M.Woodward, and J. W.Lynn, Phys. Rev. Lett. 93, 157003 (2004). 10.1103/PhysRevLett.93.157003 Google Scholar
  • 23) D. T.Adroja, J.-G.Park, E. A.Goremychkin, N.Takeda, M.Ishikawa, K. A.McEwen, R.Osborn, A. D.Hiller, and B. D.Rainfrd, Physica B 359–361, 983 (2005). 10.1016/j.physb.2005.01.286 Google Scholar