- Full text:
- PDF (eReader) / PDF (Download) (1177 kB)
Rapid neutron capture process (r-process) elements have been detected in a large number of metal-poor halo stars. The observed large abundance scatter in these stars suggests that r-process elements have been produced in a site that is rare compared to core-collapse supernovae (CCSNe). Although being rare, neutron star mergers (NSM) alone have difficulties explaining the observations, especially at low metallicities. In this paper, we present a complementary scenario: Using black hole - neutron star mergers (BHNSMs) as additional r-process site. We show that both sites together are able to explain the observed r-process abundances in the Galaxy.

References
- 1) J. J.Cowan, F.-K.Thielemann, and J. W.Truran, Phys. Rep. 208, 267 (1991). 10.1016/0370-1573(91)90070-3 Google Scholar
- 2) F.-K.Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011). 10.1016/j.ppnp.2011.01.032 Google Scholar
- 3) J. J.Cowan et al., arXiv:1901.01410.Google Scholar
- 4) C.Freiburghaus, S.Rosswog, and F.-K.Thielemann, Astrophys. J. 525, L121 (1999). 10.1086/312343 Google Scholar
- 5) D.Argast, M.Samland, F.-K.Thielemann, and Y.-Z.Qian, Astron. Astrophys. 416, 997 (2004). 10.1051/0004-6361:20034265 Google Scholar
- 6) B.Wehmeyer, M.Pignatari, and F.-K.Thielemann, Mon. Not. R. Astron. Soc. 452, 1970 (2015). 10.1093/mnras/stv1352 Google Scholar
- 7) C. J.Haynes and C.Kobayashi, Mon. Not. R. Astron. Soc. 483, 5123 (2019). 10.1093/mnras/sty3389 Google Scholar
- 8) C.Sneden, J. J.Cowan, and R.Gallino, Annu. Rev. Astron. Astrophys. 46, 241 (2008). 10.1146/annurev.astro.46.060407.145207 Google Scholar
- 9) B.Wehmeyer, C.Fröhlich, B.Côté, M.Pignatari, and F.-K.Thielemann, Mon. Not. R. Astron. Soc. 487, 1745 (2019). 10.1093/mnras/stz1310 Google Scholar
- 10) A.Perego, M.Hempel, C.Fröhlich, K.Ebinger, M.Eichler, J.Casanova, M.Liebendörfer, and F.-K.Thielemann, Astrophys. J. 806, 275 (2015). 10.1088/0004-637X/806/2/275 Google Scholar
- 11) S.Curtis, K.Ebinger, C.Fröhlich, M.Hempel, A.Perego, M.Liebendörfer, and F.-K.Thielemann, Astrophys. J. 870, 2 (2019). 10.3847/1538-4357/aae7d2 Google Scholar
- 12) K.Ebinger, S.Curtis, C.Fröhlich, M.Hempel, A.Perego, M.Liebendörfer, and F.-K.Thielemann, Astrophys. J. 870, 1 (2019). 10.3847/1538-4357/aae7c9 Google Scholar
- 13) K.Ebinger, S.Curtis, S.Gosh, C.Fröhlich, M.Hempel, A.Perego, M.Liebendörfer, and F.-K.Thielemann, arXiv:1910.08958.Google Scholar
- 14) B.Côté, K.Belczynski, C. L.Fryer, Ch.Ritter, A.Paul, B.Wehmeyer, and B. W.O’Shea, Astrophys. J. 836, 230 (2017). 10.3847/1538-4357/aa5c8d Google Scholar
- 15) B. P.Abbott et al., arxiv:1811.12940.Google Scholar
- 16) B. P.Abbott et al., arxiv:1811.12907.Google Scholar
- 17) F.van de Voort et al., arXiv:1907.01557.Google Scholar
- 18) M.Safarzadeh, R.Sarmento, and E.Scannapieco, Astrophys. J. 876, 28 (2019). 10.3847/1538-4357/ab1341 Google Scholar
- 19) T.Fischer, N.-U. F.Bastian, M.-R.Wu, P.Baklanov, E.Sorokina, S.Blinnikov, S.Typel, Th.Klähn, and D. B.Blaschke, Nat. Astron. 2, 980 (2018). 10.1038/s41550-018-0583-0 Google Scholar
- 20) T.Ojima, Y.Ishimaru, S.Wanajo, N.Prantzos, and P.François, Astrophys. J. 865, 87 (2018). 10.3847/1538-4357/aada11 Google Scholar
- 21) M.Bonetti, A.Perego, M.Dotti, and G.Cescutti, arXiv:1905.12016.Google Scholar
- 22) Y.Ishimaru, S.Wanajo, and N.Prantzos, Astrophys. J. 804, L35 (2015). 10.1088/2041-8205/804/2/L35 Google Scholar
- 23) E. N.Kirby, J. G.Cohen, P.Guhathakurta, L.Cheng, J. S.Bullock, and A. A.Gallazzi, Astrophys. J. 779, 102 (2013). 10.1088/0004-637X/779/2/102 Google Scholar
- 24) B.Côté et al., Astrophys. J. 875, 106 (2019). 10.3847/1538-4357/ab10db Google Scholar
- 25) K.Hotokezaka, P.Beniamini, and T.Piran, Int. J. Mod. Phys. D 27, 1842005 (2018). 10.1142/S0218271818420051 Google Scholar
- 26) O.Korobkin, S.Rosswog, A.Arcones, and C.Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012). 10.1111/j.1365-2966.2012.21859.x Google Scholar