JPS Conf. Proc. 31, 011063 (2020) [5 pages]
Proceedings of the 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15)
Could Failed Supernovae Explain the High r-process Abundances in Some Low Metallicity Stars?
1Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences Centre of Excellence, Konkoly-Thege Miklós út 15-17, H-1121 Budapest, Hungary
2Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, U.K.
3Department of Physics, North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27695-8202, U.S.A.
4E.A. Milne Centre for Astrophysics, Dept. of Physics & Mathematics, University of Hull, HU6 7RX, U.K.
5Univ. Basel, Dept. Phys., Klingelbergstr. 82, CH-4056 Basel, Switzerland
6GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
7Joint Institute for Nuclear Astrophysics - Center for the Evolution of the Elements
8NuGrid Collaboration, http://nugridstars.org
Received September 16, 2019

Rapid neutron capture process (r-process) elements have been detected in a large number of metal-poor halo stars. The observed large abundance scatter in these stars suggests that r-process elements have been produced in a site that is rare compared to core-collapse supernovae (CCSNe). Although being rare, neutron star mergers (NSM) alone have difficulties explaining the observations, especially at low metallicities. In this paper, we present a complementary scenario: Using black hole - neutron star mergers (BHNSMs) as additional r-process site. We show that both sites together are able to explain the observed r-process abundances in the Galaxy.

©2020 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) J. J.Cowan, F.-K.Thielemann, and J. W.Truran, Phys. Rep. 208, 267 (1991). 10.1016/0370-1573(91)90070-3 Google Scholar
  • 2) F.-K.Thielemann et al., Prog. Part. Nucl. Phys. 66, 346 (2011). 10.1016/j.ppnp.2011.01.032 Google Scholar
  • 3) J. J.Cowan et al., arXiv:1901.01410.Google Scholar
  • 4) C.Freiburghaus, S.Rosswog, and F.-K.Thielemann, Astrophys. J. 525, L121 (1999). 10.1086/312343 Google Scholar
  • 5) D.Argast, M.Samland, F.-K.Thielemann, and Y.-Z.Qian, Astron. Astrophys. 416, 997 (2004). 10.1051/0004-6361:20034265 Google Scholar
  • 6) B.Wehmeyer, M.Pignatari, and F.-K.Thielemann, Mon. Not. R. Astron. Soc. 452, 1970 (2015). 10.1093/mnras/stv1352 Google Scholar
  • 7) C. J.Haynes and C.Kobayashi, Mon. Not. R. Astron. Soc. 483, 5123 (2019). 10.1093/mnras/sty3389 Google Scholar
  • 8) C.Sneden, J. J.Cowan, and R.Gallino, Annu. Rev. Astron. Astrophys. 46, 241 (2008). 10.1146/annurev.astro.46.060407.145207 Google Scholar
  • 9) B.Wehmeyer, C.Fröhlich, B.Côté, M.Pignatari, and F.-K.Thielemann, Mon. Not. R. Astron. Soc. 487, 1745 (2019). 10.1093/mnras/stz1310 Google Scholar
  • 10) A.Perego, M.Hempel, C.Fröhlich, K.Ebinger, M.Eichler, J.Casanova, M.Liebendörfer, and F.-K.Thielemann, Astrophys. J. 806, 275 (2015). 10.1088/0004-637X/806/2/275 Google Scholar
  • 11) S.Curtis, K.Ebinger, C.Fröhlich, M.Hempel, A.Perego, M.Liebendörfer, and F.-K.Thielemann, Astrophys. J. 870, 2 (2019). 10.3847/1538-4357/aae7d2 Google Scholar
  • 12) K.Ebinger, S.Curtis, C.Fröhlich, M.Hempel, A.Perego, M.Liebendörfer, and F.-K.Thielemann, Astrophys. J. 870, 1 (2019). 10.3847/1538-4357/aae7c9 Google Scholar
  • 13) K.Ebinger, S.Curtis, S.Gosh, C.Fröhlich, M.Hempel, A.Perego, M.Liebendörfer, and F.-K.Thielemann, arXiv:1910.08958.Google Scholar
  • 14) B.Côté, K.Belczynski, C. L.Fryer, Ch.Ritter, A.Paul, B.Wehmeyer, and B. W.O’Shea, Astrophys. J. 836, 230 (2017). 10.3847/1538-4357/aa5c8d Google Scholar
  • 15) B. P.Abbott et al., arxiv:1811.12940.Google Scholar
  • 16) B. P.Abbott et al., arxiv:1811.12907.Google Scholar
  • 17) F.van de Voort et al., arXiv:1907.01557.Google Scholar
  • 18) M.Safarzadeh, R.Sarmento, and E.Scannapieco, Astrophys. J. 876, 28 (2019). 10.3847/1538-4357/ab1341 Google Scholar
  • 19) T.Fischer, N.-U. F.Bastian, M.-R.Wu, P.Baklanov, E.Sorokina, S.Blinnikov, S.Typel, Th.Klähn, and D. B.Blaschke, Nat. Astron. 2, 980 (2018). 10.1038/s41550-018-0583-0 Google Scholar
  • 20) T.Ojima, Y.Ishimaru, S.Wanajo, N.Prantzos, and P.François, Astrophys. J. 865, 87 (2018). 10.3847/1538-4357/aada11 Google Scholar
  • 21) M.Bonetti, A.Perego, M.Dotti, and G.Cescutti, arXiv:1905.12016.Google Scholar
  • 22) Y.Ishimaru, S.Wanajo, and N.Prantzos, Astrophys. J. 804, L35 (2015). 10.1088/2041-8205/804/2/L35 Google Scholar
  • 23) E. N.Kirby, J. G.Cohen, P.Guhathakurta, L.Cheng, J. S.Bullock, and A. A.Gallazzi, Astrophys. J. 779, 102 (2013). 10.1088/0004-637X/779/2/102 Google Scholar
  • 24) B.Côté et al., Astrophys. J. 875, 106 (2019). 10.3847/1538-4357/ab10db Google Scholar
  • 25) K.Hotokezaka, P.Beniamini, and T.Piran, Int. J. Mod. Phys. D 27, 1842005 (2018). 10.1142/S0218271818420051 Google Scholar
  • 26) O.Korobkin, S.Rosswog, A.Arcones, and C.Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012). 10.1111/j.1365-2966.2012.21859.x Google Scholar