Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 38, 011147 (2023) [7 pages]
Proceedings of the 29th International Conference on Low Temperature Physics (LT29)
19F-NMR Study of Spin-1/2 Antiferromagnetic Chain D-F5PNN with a Single Crystal Crossing Critical Field Region
1Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba 277-0882, Japan
3Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
Received July 31, 2022

19F-NMR measurements of a single crystal of organic radical deuterated pentafluorophenyl-nitronyl-nitroxide (D-F5PNN), which is characterized by a Heisenberg spin-1/2 antiferromagnetic chain model, were performed in a magnetic field of up to 8 T and at temperatures as low as 1.5 K. We obtained the hyperfine tensors of three 19F sites from the NMR spectra as a function of the magnetic field direction. The magnetic moment of the electron spin, calculated by splitting the spectra with hyperfine tensors, is consistent with data from macroscopic magnetization measurements. Furthermore, the spin fluctuations parallel to the magnetic field had a smaller contribution to the magnetic field dependence of the spin–lattice relaxation rate T1−1 of the para-19F site than for other sites.

©2023 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1) T.Suzuki and S.Suga, Phys. Rev. B 70, 054419 (2004). 10.1103/PhysRevB.70.054419 Google Scholar
  • 2) E.Orignac, R.Citro, and T.Giamarchi, Phys. Rev. B 75, 140403(R) (2007). 10.1103/PhysRevB.75.140403 Google Scholar
  • 3) T.Moriya, Prog. Theor. Phys. 16, 23 (1956). 10.1143/PTP.16.23 Google Scholar
  • 4) C. P.Slichter, Principles of Magnetic Resonance (Springer-Verlag NewYork, 1990) 3rd ed. Google Scholar
  • 5) H.Kühne, M.Günther, S.Grossjohann, W.Brenig, F. J.Litterst, A. P.Reyes, P. L.Kuhns, M. M.Turnbull, C. P.Landee, and H.-H.Klauss, Phys. Status Solidi B 247, 671 (2010). 10.1002/pssb.200983077 Google Scholar
  • 6) M.Takahashi, Y.Hosokoshi, H.Nakano, T.Goto, M.Takahashi, and M.Kinoshita, Mol. Cryst. Liq. Cryst. 306, 111 (1997). 10.1080/10587259708044556 Google Scholar
  • 7) K.Izumi, T.Goto, Y.Hosokoshi, and J.-P.Boucher, Physica B 329–333, 1191 (2003). 10.1016/S0921-4526(02)02110-5 Google Scholar
  • 8) T.Harada, K.Shimizu, T.Matsushita, N.Wada, and Y.Hosokoshi, J. Phys.: Conf. Ser. 400, 032016 (2012). 10.1088/1742-6596/400/3/032016 Google Scholar
  • 9) Y.Inagaki, T.Kawae, N.Sakai, N.Kawame, T.Goto, J.Yamauchi, Y.Yoshida, Y.Fujii, T.Kambe, Y.Hosokoshi, B.Grenier, and J.-P.Boucher, J. Phys. Soc. Jpn. 86, 113706 (2017). 10.7566/JPSJ.86.113706[Abstract] Google Scholar
  • 10) Y.Hosokoshi, M.Tamura, M.Kinoshita, H.Sawa, R.Kato, Y.Fujiwara, and Y.Ueda, J. Mater. Chem. 4, 1219 (1994). 10.1039/jm9940401219 Google Scholar
  • 11) N.Sakai et al., JPS Fall Meeting, 2005, 21pPSB-12.Google Scholar
  • 12) N.Kawame, private communications.Google Scholar
  • 13) E.Coira, P.Barmettler, T.Giamarchi, and C.Kollath, Phys. Rev. B 94, 144408 (2016). 10.1103/PhysRevB.94.144408 Google Scholar
  • 14) H.Kühne, A. A.Zvyagin, M.Günther, A. P.Reyes, P. L.Kuhns, M. M.Turnbull, C. P.Landee, and H.-H.Klauss, Phys. Rev. B 83, 100407(R) (2011). 10.1103/PhysRevB.83.100407 Google Scholar
  • 15) S.Mukhopadhyay, M.Klanjšek, M. S.Grbić, R.Blinder, H.Mayaffre, C.Berthier, M.Horvatić, M. A.Continentino, A.Paduan-Filho, B.Chiari, and O.Piovesana, Phys. Rev. Lett. 109, 177206 (2012). 10.1103/PhysRevLett.109.177206 Google Scholar