- Full text:
- PDF (eReader) / PDF (Download) (408 kB)
Inelastic neutron scattering measurements of PrNb2Al20, which exhibits non-Fermi-liquid behaviors, were carried out in order to determine the f-electron crystalline-electric-field split. Magnetic inelastic scattering intensities were observed at excitation energies of up to 15 meV, which are attributed to the crystalline-electric-field level scheme with the non-Kramers Γ3 doublet ground state of 4f2 in Pr3+ ions. The intrinsic full width at half maximum of the excitations from Γ3 to Γ5 and Γ4 are estimated to be approximately 3.7 meV. These values are much larger than those of the isomorphic PrTr2Zn20 (Tr = Rh and Ir). The considerably broad spectrum of PrNb2Al20 supports the existence of hybridization between Pr 4f electrons and conduction electrons, which mediates the Kondo effect in this material.
References
- 1 J. Kondo, Prog. Theor. Phys. 32, 37 (1964). 10.1143/PTP.32.37 Crossref, Google Scholar
- 2 Theory of Heavy Fermions and Valence Fluctuations, ed. T. Kasuya and T. Saso (Springer, Heidelberg, 1985). Crossref, Google Scholar
- 3 D. L. Cox and M. Jarell, J. Phys.: Condens. Matter 8, 9825 (1996). 10.1088/0953-8984/8/48/012 Crossref, Google Scholar
- 4 S. Hoshino, J. Otsuki, and Y. Kuramoto, J. Phys. Soc. Jpn. 79, 074720 (2010). 10.1143/JPSJ.79.074720 Link, Google Scholar
- 5 S. Hoshino, J. Otsuki, and Y. Kuramoto, J. Phys. Soc. Jpn. 80, 033703 (2011). 10.1143/JPSJ.80.033703 Link, Google Scholar
- 6 Y. Kuramoto, S. Hoshino, and J. Otsuki, J. Phys. Soc. Jpn. 80, SA018 (2011). 10.1143/JPSJS.80SA.SA018 Link, Google Scholar
- 7 S. Hoshino, J. Otsuki, and Y. Kuramoto, J. Phys. Soc. Jpn. 82, 044707 (2013). 10.7566/JPSJ.82.044707 Link, Google Scholar
- 8 T. Onimaru and H. Kusunose, J. Phys. Soc. Jpn. 85, 082002 (2016). 10.7566/JPSJ.85.082002 Link, Google Scholar
- 9 P. C. Canfield, S. Jia, E. D. Mun, S. L. Bud’ko, G. D. Samolyuk, and M. S. Torikachvili, Physica B 403, 844 (2008). 10.1016/j.physb.2007.10.234 Crossref, Google Scholar
- 10 S. Jia, N. Ni, G. D. Samolyuk, A. Safa-Sefat, K. Dennis, H. Ko, G. J. Miller, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 77, 104408 (2008). 10.1103/PhysRevB.77.104408 Crossref, Google Scholar
- 11 S. Jia, Dr. Thesis, Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa (2008). Google ScholarS. Jia, Dr. Thesis, Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa (2008). Google Scholar
- 12 T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, T. Sakakibara, Y. Karaki, M. Kubota, and T. Takabatake, Phys. Rev. Lett. 106, 177001 (2011). 10.1103/PhysRevLett.106.177001 Crossref, Google Scholar
- 13 I. Ishii, H. Muneshige, Y. Suetomi, T. K. Fujita, T. Onimaru, K. T. Matsumoto, T. Takabatake, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, and T. Suzuki, J. Phys. Soc. Jpn. 80, 093601 (2011). 10.1143/JPSJ.80.093601 Link, Google Scholar
- 14 K. Iwasa, H. Kobayashi, T. Onimaru, K. T. Matsumoto, N. Nagasawa, T. Takabatake, S. Ohira-Kawamura, T. Kikuchi, Y. Inamura, and K. Nakajima, J. Phys. Soc. Jpn. 82, 043707 (2013). 10.7566/JPSJ.82.043707 Link, Google Scholar
- 15 T. Onimaru, N. Nagasawa, K. T. Matsumoto, K. Wakiya, K. Umeo, S. Kittaka, T. Sakakibara, Y. Matsushita, and T. Takabatake, Phys. Rev. B 86, 184426 (2012). 10.1103/PhysRevB.86.184426 Crossref, Google Scholar
- 16 A. Tsuruta and K. Miyake, J. Phys. Soc. Jpn. 84, 114714 (2015). 10.7566/JPSJ.84.114714 Link, Google Scholar
- 17 A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011). 10.1143/JPSJ.80.063701 Link, Google Scholar
- 18 Y. Tokunaga, H. Sakai, S. Kambe, A. Sakai, S. Nakatsuji, and H. Harima, Phys. Rev. B 88, 085124 (2013). 10.1103/PhysRevB.88.085124 Crossref, Google Scholar
- 19 A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012). 10.1143/JPSJ.81.083702 Link, Google Scholar
- 20 K. Matsubayashi, T. Tanaka, A. Sakai, S. Nakatsuji, Y. Kubo, and Y. Uwatoko, Phys. Rev. Lett. 109, 187004 (2012). 10.1103/PhysRevLett.109.187004 Crossref, Google Scholar
- 21 K. Matsubayashi, T. Tanaka, J. Suzuki, A. Sakai, S. Nakatsuji, K. Kitagawa, Y. Kubo, and Y. Uwatoko, JPS Conf. Proc. 3, 011077 (2014). 10.7566/JPSCP.3.011077 Link, Google Scholar
- 22 T. J. Sato, S. Ibuka, Y. Nambu, T. Yamazaki, T. Hong, A. Sakai, and S. Nakatsuji, Phys. Rev. B 86, 184419 (2012). 10.1103/PhysRevB.86.184419 Crossref, Google Scholar
- 23 R. Higashinaka, A. Nakama, M. Ando, M. Watanabe, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 80, SA048 (2011). 10.1143/JPSJS.80SA.SA048 Link, Google Scholar
- 24 R. Higashinaka, A. Nakama, M. Ando, M. Watanabe, Y. Aoki, and H. Sato, private communication. Google ScholarR. Higashinaka, A. Nakama, M. Ando, M. Watanabe, Y. Aoki, and H. Sato, private communication. Google Scholar
- 25 T. Kubo, H. Kotegawa, H. Tou, R. Higashinaka, A. Nakama, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 84, 074701 (2015). 10.7566/JPSJ.84.074701 Link, Google Scholar
- 26 K. Nakajima, S. Ohira-Kawamura, T. Kikuchi, M. Nakamura, R. Kajimoto, Y. Inamura, N. Takahashi, K. Aizawa, K. Suzuya, K. Shibata, T. Nakatani, K. Soyama, R. Maruyama, H. Tanaka, W. Kambara, T. Iwahashi, Y. Itoh, T. Osakabe, S. Wakimoto, K. Kakurai, F. Maekawa, M. Harada, K. Oikawa, R. E. Lechner, F. Mezei, and M. Arai, J. Phys. Soc. Jpn. 80, SB028 (2011). 10.1143/JPSJS.80SB.SB028 Link, Google Scholar
- 27 Y. Inamura, T. Nakatani, J. Suzuki, and T. Otomo, J. Phys. Soc. Jpn. 82, SA031 (2013). 10.7566/JPSJS.82SA.SA031 Link, Google Scholar
- 28 M. J. Winiarski, B. Wiendlocha, M. Sternik, P. Wiśniewski, J. R. O’Brien, D. Kaczorowski, and T. Klimczuk, Phys. Rev. B 93, 134507 (2016). 10.1103/PhysRevB.93.134507 Crossref, Google Scholar
- (29) The empty-cell data obtained with \(\epsilon _{\text{i}} = 15.14\) meV (black diamonds) in Fig. 2 shows a small peak at 1.7 meV. There is an enhancement of intensity in the same energy region even in the sample data (blue circles), although it is less pronounced because of the other strong signal intensity. These small peaks are confirmed not to originate from the sample scattering. Similar additional peaks were also detected at 0.3 meV with the smaller incident energy \(\epsilon _{\text{i}} = 2.77\) meV as well as at 0.53 meV with \(\epsilon _{\text{i}} = 4.68\) meV. These peaks are explained by the shift in the neutron time of flight of the elastic scattering at location outside the sample, which is inferred to be the cryostat wall. Google Scholar
- 30 K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962). 10.1016/0022-3697(62)90192-0 Crossref, Google Scholar
- 31 W. Marshall and R. D. Lowde, Rep. Prog. Phys. 31, 705 (1968). 10.1088/0034-4885/31/2/305 Crossref, Google Scholar
- 32 D. Okuyama, T. Hong, M. Tsujimoto, Y. Shimura, A. Sakai, A. Magata, Y. Nambu, S. Nakatsuji, and T. J. Sato, presented at Autumn Meet. Physical Society of Japan, 2015, 18pDA-04. Google Scholar