J. Phys. Soc. Jpn. 85, 123704 (2016) [5 Pages]
LETTERS

Broad Excitation Spectra between Crystalline-Electric-Field Levels Associated with Non-Kramers Doublet Ground State of f Electrons in PrNb2Al20

+ Affiliations
1Frontier Research Center for Applied Atomic Sciences and Institute of Quantum Beam Science, Ibaraki University, Tokai, Ibaraki 319-1106, Japan2Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan3Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

Inelastic neutron scattering measurements of PrNb2Al20, which exhibits non-Fermi-liquid behaviors, were carried out in order to determine the f-electron crystalline-electric-field split. Magnetic inelastic scattering intensities were observed at excitation energies of up to 15 meV, which are attributed to the crystalline-electric-field level scheme with the non-Kramers Γ3 doublet ground state of 4f2 in Pr3+ ions. The intrinsic full width at half maximum of the excitations from Γ3 to Γ5 and Γ4 are estimated to be approximately 3.7 meV. These values are much larger than those of the isomorphic PrTr2Zn20 (Tr = Rh and Ir). The considerably broad spectrum of PrNb2Al20 supports the existence of hybridization between Pr 4f electrons and conduction electrons, which mediates the Kondo effect in this material.

©2016 The Physical Society of Japan

References

  • 1 J. Kondo, Prog. Theor. Phys. 32, 37 (1964). 10.1143/PTP.32.37 CrossrefGoogle Scholar
  • 2 Theory of Heavy Fermions and Valence Fluctuations, ed. T. Kasuya and T. Saso (Springer, Heidelberg, 1985). CrossrefGoogle Scholar
  • 3 D. L. Cox and M. Jarell, J. Phys.: Condens. Matter 8, 9825 (1996). 10.1088/0953-8984/8/48/012 CrossrefGoogle Scholar
  • 4 S. Hoshino, J. Otsuki, and Y. Kuramoto, J. Phys. Soc. Jpn. 79, 074720 (2010). 10.1143/JPSJ.79.074720 LinkGoogle Scholar
  • 5 S. Hoshino, J. Otsuki, and Y. Kuramoto, J. Phys. Soc. Jpn. 80, 033703 (2011). 10.1143/JPSJ.80.033703 LinkGoogle Scholar
  • 6 Y. Kuramoto, S. Hoshino, and J. Otsuki, J. Phys. Soc. Jpn. 80, SA018 (2011). 10.1143/JPSJS.80SA.SA018 LinkGoogle Scholar
  • 7 S. Hoshino, J. Otsuki, and Y. Kuramoto, J. Phys. Soc. Jpn. 82, 044707 (2013). 10.7566/JPSJ.82.044707 LinkGoogle Scholar
  • 8 T. Onimaru and H. Kusunose, J. Phys. Soc. Jpn. 85, 082002 (2016). 10.7566/JPSJ.85.082002 LinkGoogle Scholar
  • 9 P. C. Canfield, S. Jia, E. D. Mun, S. L. Bud’ko, G. D. Samolyuk, and M. S. Torikachvili, Physica B 403, 844 (2008). 10.1016/j.physb.2007.10.234 CrossrefGoogle Scholar
  • 10 S. Jia, N. Ni, G. D. Samolyuk, A. Safa-Sefat, K. Dennis, H. Ko, G. J. Miller, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 77, 104408 (2008). 10.1103/PhysRevB.77.104408 CrossrefGoogle Scholar
  • 11 S. Jia, Dr. Thesis, Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa (2008). Google ScholarS. Jia, Dr. Thesis, Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa (2008). Google Scholar
  • 12 T. Onimaru, K. T. Matsumoto, Y. F. Inoue, K. Umeo, T. Sakakibara, Y. Karaki, M. Kubota, and T. Takabatake, Phys. Rev. Lett. 106, 177001 (2011). 10.1103/PhysRevLett.106.177001 CrossrefGoogle Scholar
  • 13 I. Ishii, H. Muneshige, Y. Suetomi, T. K. Fujita, T. Onimaru, K. T. Matsumoto, T. Takabatake, K. Araki, M. Akatsu, Y. Nemoto, T. Goto, and T. Suzuki, J. Phys. Soc. Jpn. 80, 093601 (2011). 10.1143/JPSJ.80.093601 LinkGoogle Scholar
  • 14 K. Iwasa, H. Kobayashi, T. Onimaru, K. T. Matsumoto, N. Nagasawa, T. Takabatake, S. Ohira-Kawamura, T. Kikuchi, Y. Inamura, and K. Nakajima, J. Phys. Soc. Jpn. 82, 043707 (2013). 10.7566/JPSJ.82.043707 LinkGoogle Scholar
  • 15 T. Onimaru, N. Nagasawa, K. T. Matsumoto, K. Wakiya, K. Umeo, S. Kittaka, T. Sakakibara, Y. Matsushita, and T. Takabatake, Phys. Rev. B 86, 184426 (2012). 10.1103/PhysRevB.86.184426 CrossrefGoogle Scholar
  • 16 A. Tsuruta and K. Miyake, J. Phys. Soc. Jpn. 84, 114714 (2015). 10.7566/JPSJ.84.114714 LinkGoogle Scholar
  • 17 A. Sakai and S. Nakatsuji, J. Phys. Soc. Jpn. 80, 063701 (2011). 10.1143/JPSJ.80.063701 LinkGoogle Scholar
  • 18 Y. Tokunaga, H. Sakai, S. Kambe, A. Sakai, S. Nakatsuji, and H. Harima, Phys. Rev. B 88, 085124 (2013). 10.1103/PhysRevB.88.085124 CrossrefGoogle Scholar
  • 19 A. Sakai, K. Kuga, and S. Nakatsuji, J. Phys. Soc. Jpn. 81, 083702 (2012). 10.1143/JPSJ.81.083702 LinkGoogle Scholar
  • 20 K. Matsubayashi, T. Tanaka, A. Sakai, S. Nakatsuji, Y. Kubo, and Y. Uwatoko, Phys. Rev. Lett. 109, 187004 (2012). 10.1103/PhysRevLett.109.187004 CrossrefGoogle Scholar
  • 21 K. Matsubayashi, T. Tanaka, J. Suzuki, A. Sakai, S. Nakatsuji, K. Kitagawa, Y. Kubo, and Y. Uwatoko, JPS Conf. Proc. 3, 011077 (2014). 10.7566/JPSCP.3.011077 LinkGoogle Scholar
  • 22 T. J. Sato, S. Ibuka, Y. Nambu, T. Yamazaki, T. Hong, A. Sakai, and S. Nakatsuji, Phys. Rev. B 86, 184419 (2012). 10.1103/PhysRevB.86.184419 CrossrefGoogle Scholar
  • 23 R. Higashinaka, A. Nakama, M. Ando, M. Watanabe, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 80, SA048 (2011). 10.1143/JPSJS.80SA.SA048 LinkGoogle Scholar
  • 24 R. Higashinaka, A. Nakama, M. Ando, M. Watanabe, Y. Aoki, and H. Sato, private communication. Google ScholarR. Higashinaka, A. Nakama, M. Ando, M. Watanabe, Y. Aoki, and H. Sato, private communication. Google Scholar
  • 25 T. Kubo, H. Kotegawa, H. Tou, R. Higashinaka, A. Nakama, Y. Aoki, and H. Sato, J. Phys. Soc. Jpn. 84, 074701 (2015). 10.7566/JPSJ.84.074701 LinkGoogle Scholar
  • 26 K. Nakajima, S. Ohira-Kawamura, T. Kikuchi, M. Nakamura, R. Kajimoto, Y. Inamura, N. Takahashi, K. Aizawa, K. Suzuya, K. Shibata, T. Nakatani, K. Soyama, R. Maruyama, H. Tanaka, W. Kambara, T. Iwahashi, Y. Itoh, T. Osakabe, S. Wakimoto, K. Kakurai, F. Maekawa, M. Harada, K. Oikawa, R. E. Lechner, F. Mezei, and M. Arai, J. Phys. Soc. Jpn. 80, SB028 (2011). 10.1143/JPSJS.80SB.SB028 LinkGoogle Scholar
  • 27 Y. Inamura, T. Nakatani, J. Suzuki, and T. Otomo, J. Phys. Soc. Jpn. 82, SA031 (2013). 10.7566/JPSJS.82SA.SA031 LinkGoogle Scholar
  • 28 M. J. Winiarski, B. Wiendlocha, M. Sternik, P. Wiśniewski, J. R. O’Brien, D. Kaczorowski, and T. Klimczuk, Phys. Rev. B 93, 134507 (2016). 10.1103/PhysRevB.93.134507 CrossrefGoogle Scholar
  •   (29) The empty-cell data obtained with \(\epsilon _{\text{i}} = 15.14\) meV (black diamonds) in Fig. 2 shows a small peak at 1.7 meV. There is an enhancement of intensity in the same energy region even in the sample data (blue circles), although it is less pronounced because of the other strong signal intensity. These small peaks are confirmed not to originate from the sample scattering. Similar additional peaks were also detected at 0.3 meV with the smaller incident energy \(\epsilon _{\text{i}} = 2.77\) meV as well as at 0.53 meV with \(\epsilon _{\text{i}} = 4.68\) meV. These peaks are explained by the shift in the neutron time of flight of the elastic scattering at location outside the sample, which is inferred to be the cryostat wall. Google Scholar
  • 30 K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962). 10.1016/0022-3697(62)90192-0 CrossrefGoogle Scholar
  • 31 W. Marshall and R. D. Lowde, Rep. Prog. Phys. 31, 705 (1968). 10.1088/0034-4885/31/2/305 CrossrefGoogle Scholar
  • 32 D. Okuyama, T. Hong, M. Tsujimoto, Y. Shimura, A. Sakai, A. Magata, Y. Nambu, S. Nakatsuji, and T. J. Sato, presented at Autumn Meet. Physical Society of Japan, 2015, 18pDA-04. Google Scholar