J. Phys. Soc. Jpn. 88, 034709 (2019) [6 Pages]
FULL PAPERS

Suppression of Ferromagnetic Order by Uniaxial Anisotropy and Its Influence on Nuclear Magnetic Relaxation for Li9V3(P2O7)3(PO4)2

+ Affiliations
Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

The spin dynamics of the Li9V3(P2O7)3(PO4)2 insertion electrode system is explored with the results of magnetization and nuclear magnetic resonance for Li ions. The magnetic susceptibility at high temperatures exhibits a Curie–Weiss law with a ferromagnetic Weiss temperature of about 3 K, while at low temperatures, the enhancement and suppression of susceptibility appear in the absence of long-range order. This aspect is understood on the basis of the XXZ model with the single-ion uniaxial anisotropy. Thus, the slowing down of ferromagnetic spin fluctuations without the long-range order occurs at temperatures below 10 K. In the vicinity of the virtual transition temperature, the spin–lattice relaxation rate \(T_{1}^{ - 1}\) can be expressed by the theoretical asymptotic form with the spin susceptibility χs, \(T_{1}^{ - 1} \propto \chi _{\text{s}}^{1/2}\). At temperatures above 150 K, on the other hand, a quadrupole relaxation by spin–phonon coupling through the two-phonon Raman process may become dominant, which is likely caused by the significantly oscillated Li ions in the large tunnel of the characteristic crystal structure.

©2019 The Physical Society of Japan

References

  • 1 For a review, see J. B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010). 10.1021/cm901452z CrossrefGoogle Scholar
  • 2 M. Onoda, M. Inagaki, and H. Saito, J. Solid State Chem. 219, 220 (2014). 10.1016/j.jssc.2014.07.040 CrossrefGoogle Scholar
  • 3 M. Onoda and T. Ishibashi, J. Phys. Soc. Jpn. 84, 044802 (2015). 10.7566/JPSJ.84.044802 LinkGoogle Scholar
  • 4 M. Onoda and S. Ikeda, J. Phys. Soc. Jpn. 82, 074801 (2013). 10.7566/JPSJ.82.074801 LinkGoogle Scholar
  • 5 J. B. Goodenough, H. Y. P. Hong, and J. A. Kafalas, Mater. Res. Bull. 11, 203 (1976). 10.1016/0025-5408(76)90077-5 CrossrefGoogle Scholar
  • 6 M. Onoda and H. Kanazawa, J. Phys. Soc. Jpn. 85, 044801 (2016). 10.7566/JPSJ.85.044801 LinkGoogle Scholar
  • 7 M. Onoda, S. Ikeda, and T. Ishibashi, J. Phys.: Condens. Matter 24, 085402 (2012). 10.1088/0953-8984/24/8/085402 CrossrefGoogle Scholar
  • 8 E. König and G. König, in Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, ed. K.-H. Hellwege and A. M. Hellwege (Springer, Berlin, 1984) Landolt-Börnstein, New Series, Group II, Vol. 12, Chap. 1. Google Scholar
  • 9 M. Onoda and S. Takada, submitted to J. Phys. Soc. Jpn. Google Scholar
  • 10 A. S. Chakravarty, Proc. Phys. Soc. 74, 711 (1959). 10.1088/0370-1328/74/6/308 CrossrefGoogle Scholar
  • 11 J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Clarendon, Oxford, U.K., 1932). Google Scholar
  • 12 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, U.K., 1970). Google Scholar
  • 13 A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, U.K., 1961). Google Scholar
  • 14 T. Moriya, Prog. Theor. Phys. 28, 371 (1962). 10.1143/PTP.28.371 CrossrefGoogle Scholar
  • 15 T. Moriya, Prog. Theor. Phys. 16, 23 (1956). 10.1143/PTP.16.23 CrossrefGoogle Scholar