J. Phys. Soc. Jpn. 88, 041004 (2019) [10 Pages]
SPECIAL TOPICS: Recent Progress in BiS2 Materials Science

Nanoscale Atomic Distortions in the BiS2 Superconductors: Ferrodistortive Sulfur Modes

+ Affiliations
1Department of Physics, University of Virginia, Charlottesville, VA 22904, U.S.A.2Physics and Engineering Department, Washington and Lee University, Lexington, VA 24450, U.S.A.

The discovery of phonon-mediated superconductivity in the BiS2 class led to a renewed interest in compounds that exhibit a strong structure-property relationship due to its intrinsic disorder. The ReO1−xFxBiS2 (Re = La, Nd, and Pr) systems were investigated using neutron and synchrotron X-ray diffraction to reveal the nature of electron–phonon coupling that leads to unconventional states with intricate microstructures and physical properties. In ReO1−xFxBiS2 the distortions are manifested in the form of in-plane sulfur distortions which split the in-plane Bi–S bonds while the splitting gives rise to different bond lengths around Bi atoms. The proposed distortion modes create an unequal charge distribution around the Bi atom giving rise to charge fluctuations. The superconducting phases of ReO1−xFxBiS2 also manifest z-motion of apical sulfur which could act as a charge transfer conduit between the electron doping layers and superconducting layers.

©2019 The Physical Society of Japan

References

  • 1 Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975). 10.1103/PhysRevLett.35.1399 CrossrefGoogle Scholar
  • 2 T. Vojta, J. Phys. A 39, R143 (2006). 10.1088/0305-4470/39/22/R01 CrossrefGoogle Scholar
  • 3 M. Fratini, N. Poccia, A. Ricci, G. Campi, M. Burghammer, G. Aeppli, and A. Bianconi, Nature 466, 841 (2010). 10.1038/nature09260 CrossrefGoogle Scholar
  • 4 A. Ricci, N. Poccia, G. Campi, F. Coneri, A. S. Caporale, D. Innocenti, M. Burghammer, M. v. Zimmermann, and A. Bianconi, Sci. Rep. 3, 2383 (2013). 10.1038/srep02383 CrossrefGoogle Scholar
  • 5 G. Campi, A. Bianconi, N. Poccia, G. Bianconi, L. Barba, G. Arrighetti, D. Innocenti, J. Karpinski, N. D. Zhigadlo, S. M. Kazakov, M. Burghammer, M. v. Zimmermann, M. Sprung, and A. Ricci, Nature 525, 359 (2015). 10.1038/nature14987 CrossrefGoogle Scholar
  • 6 Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, and O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012). 10.1143/JPSJ.81.114725 LinkGoogle Scholar
  • 7 Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, and O. Miura, Phys. Rev. B 86, 220510 (2012). 10.1103/PhysRevB.86.220510 CrossrefGoogle Scholar
  • 8 Y. Mizuguchi, Chem. Rec. 16, 633 (2016). 10.1002/tcr.201500263 CrossrefGoogle Scholar
  • 9 Y. Mizuguchi, A. Miura, J. Kajitani, T. Hiroi, O. Miura, K. Tadanaga, N. Kumada, E. Magome, C. Moriyoshi, and Y. Kuroiwa, Sci. Rep. 5, 14968 (2015). 10.1038/srep14968 CrossrefGoogle Scholar
  • 10 Y. Mizuguchi, Condens. Matter 2, 6 (2017). 10.3390/condmat2010006 CrossrefGoogle Scholar
  • 11 Y. Mizuguchi, J. Phys. Chem. Solids 84, 34 (2015). 10.1016/j.jpcs.2014.09.003 CrossrefGoogle Scholar
  • 12 T. Yildirim, Phys. Rev. B 87, 020506 (2013). 10.1103/PhysRevB.87.020506 CrossrefGoogle Scholar
  • 13 X. Wan, H.-C. Ding, S. Y. Savrasov, and C.-G. Duan, Phys. Rev. B 87, 115124 (2013). 10.1103/PhysRevB.87.115124 CrossrefGoogle Scholar
  • 14 B. Li, Z. W. Xing, and G. Q. Huang, Europhys. Lett. 101, 47002 (2013). 10.1209/0295-5075/101/47002 CrossrefGoogle Scholar
  • 15 X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and A. Zunger, Nat. Phys. 10, 387 (2014). 10.1038/nphys2933 CrossrefGoogle Scholar
  • 16 A. Athauda, J. Yang, B. Li, Y. Mizuguchi, S.-H. Lee, and D. Louca, J. Supercond. Novel Magn. 28, 1255 (2015). 10.1007/s10948-014-2918-0 CrossrefGoogle Scholar
  • 17 A. Omachi, T. Hiroi, J. Kajitani, O. Miura, and Y. Mizuguchi, J. Phys.: Conf. Ser. 507, 012033 (2014). 10.1088/1742-6596/507/1/012033 CrossrefGoogle Scholar
  • 18 A. Athauda, Y. Mizuguchi, M. Nagao, J. Neuefeind, and D. Louca, J. Phys. Soc. Jpn. 86, 124718 (2017). 10.7566/JPSJ.86.124718 LinkGoogle Scholar
  • 19 A. Athauda, C. Hoffmann, S. Aswartham, J. Terzic, G. Cao, X. Zhu, Y. Ren, and D. Louca, J. Phys. Soc. Jpn. 86, 054701 (2017). 10.7566/JPSJ.86.054701 LinkGoogle Scholar
  • 20 M. Nagao, S. Demura, K. Deguchi, A. Miura, S. Watauchi, T. Takei, Y. Takano, N. Kumada, and I. Tanaka, J. Phys. Soc. Jpn. 82, 113701 (2013). 10.7566/JPSJ.82.113701 LinkGoogle Scholar
  • 21 G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008). 10.1107/S0108767307043930 CrossrefGoogle Scholar
  • 22 J. Lee, M. B. Stone, A. Huq, T. Yildirim, G. Ehlers, Y. Mizuguchi, O. Miura, Y. Takano, K. Deguchi, S. Demura, and S.-H. Lee, Phys. Rev. B 87, 205134 (2013). 10.1103/PhysRevB.87.205134 CrossrefGoogle Scholar
  • 23 A. Athauda, J. Yang, S.-H. Lee, Y. Mizuguchi, K. Deguchi, Y. Takano, O. Miura, and D. Louca, Phys. Rev. B 91, 144112 (2015). 10.1103/PhysRevB.91.144112 CrossrefGoogle Scholar
  • 24 J. Kajitani, K. Deguchi, A. Omachi, T. Hiroi, Y. Takano, H. Takatsu, H. Kadowaki, O. Miura, and Y. Mizuguchi, Solid State Commun. 181, 1 (2014). 10.1016/j.ssc.2013.11.027 CrossrefGoogle Scholar
  • 25 M. Gupta and R. P. Gupta, J. Phys. III France 2, 175 (1992). 10.1051/jp3:1992114 CrossrefGoogle Scholar
  • 26 J. Neuefeind, M. Feygenson, J. Carruth, R. Hoffmann, and K. K. Chipley, Nucl. Instrum. Methods Phys. Res., Sect. B 287, 68 (2012). 10.1016/j.nimb.2012.05.037 CrossrefGoogle Scholar
  • 27 Q. Liu, X. Zhang, and A. Zunger, Phys. Rev. B 93, 174119 (2016). 10.1103/PhysRevB.93.174119 CrossrefGoogle Scholar
  • 28 X. Zhou, Q. Liu, J. A. Waugh, H. Li, T. Nummy, X. Zhang, X. Zhu, G. Cao, A. Zunger, and D. S. Dessau, Phys. Rev. B 95, 075118 (2017). 10.1103/PhysRevB.95.075118 CrossrefGoogle Scholar
  • 29 R. Sagayama, H. Sagayama, R. Kumai, Y. Murakami, T. Asano, J. Kajitani, R. Higashinaka, T. D. Matsuda, and Y. Aoki, J. Phys. Soc. Jpn. 84, 123703 (2015). 10.7566/JPSJ.84.123703 LinkGoogle Scholar