J. Phys. Soc. Jpn. 89, 013702 (2020) [5 Pages]
LETTERS
- Full text:
- PDF (eReader) / PDF (Download) (1562 kB)
Received October 22, 2019; Accepted November 11, 2019; Published December 9, 2019
We investigate the stability of multiple-Q spiral states in d–p electron systems with the strong spin–charge coupling. By using variational calculations on a square lattice, we find that the double-Q state with the scalar chirality density wave, which has been studied in the weak spin–charge coupling regime, becomes the ground state even in the strong spin–charge coupling regime by considering the effect of the d–p hybridization. We also show that the regions where the double-Q state is stabilized are widely extended for introducing the antiferromagnetic superexchange interaction between nearest-neighbor localized spins.
©2020 The Physical Society of Japan
References
- 1 D. Loss and P. M. Goldbart, Phys. Rev. B 45, 13544 (1992). 10.1103/PhysRevB.45.13544 Crossref, Google Scholar
- 2 J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tešanović, Phys. Rev. Lett. 83, 3737 (1999). 10.1103/PhysRevLett.83.3737 Crossref, Google Scholar
- 3 K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62, R6065 (2000). 10.1103/PhysRevB.62.R6065 Crossref, Google Scholar
- 4 R. Shindou and N. Nagaosa, Phys. Rev. Lett. 87, 116801 (2001). 10.1103/PhysRevLett.87.116801 Crossref, Google Scholar
- 5 Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science 291, 2573 (2001). 10.1126/science.1058161 Crossref, Google Scholar
- 6 I. Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008). 10.1103/PhysRevLett.101.156402 Crossref, Google Scholar
- 7 Y. Kato, I. Martin, and C. D. Batista, Phys. Rev. Lett. 105, 266405 (2010). 10.1103/PhysRevLett.105.266405 Crossref, Google Scholar
- 8 C. D. Batista, S.-Z. Lin, S. Hayami, and Y. Kamiya, Rep. Prog. Phys. 79, 084504 (2016). 10.1088/0034-4885/79/8/084504 Crossref, Google Scholar
- 9 I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958). 10.1016/0022-3697(58)90076-3 Crossref, Google Scholar
- 10 T. Moriya, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91 Crossref, Google Scholar
- 11 U. K. Rößler, A. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006). 10.1038/nature05056 Crossref, Google Scholar
- 12 B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96, 207202 (2006). 10.1103/PhysRevLett.96.207202 Crossref, Google Scholar
- 13 S. D. Yi, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 80, 054416 (2009). 10.1103/PhysRevB.80.054416 Crossref, Google Scholar
- 14 R. Keesman, A. O. Leonov, P. van Dieten, S. Buhrandt, G. T. Barkema, L. Fritz, and R. A. Duine, Phys. Rev. B 92, 134405 (2015). 10.1103/PhysRevB.92.134405 Crossref, Google Scholar
- 15 T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012). 10.1103/PhysRevLett.108.017206 Crossref, Google Scholar
- 16 A. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015). 10.1038/ncomms9275 Crossref, Google Scholar
- 17 S.-Z. Lin and S. Hayami, Phys. Rev. B 93, 064430 (2016). 10.1103/PhysRevB.93.064430 Crossref, Google Scholar
- 18 S. Hayami, S.-Z. Lin, and C. D. Batista, Phys. Rev. B 93, 184413 (2016). 10.1103/PhysRevB.93.184413 Crossref, Google Scholar
- 19 Y. Akagi, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 108, 096401 (2012). 10.1103/PhysRevLett.108.096401 Crossref, Google Scholar
- 20 R. Ozawa, S. Hayami, K. Barros, G.-W. Chern, Y. Motome, and C. D. Batista, J. Phys. Soc. Jpn. 85, 103703 (2016). 10.7566/JPSJ.85.103703 Link, Google Scholar
- 21 S. Hayami, R. Ozawa, and Y. Motome, Phys. Rev. B 95, 224424 (2017). 10.1103/PhysRevB.95.224424 Crossref, Google Scholar
- 22 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 10.1103/PhysRev.96.99 Crossref, Google Scholar
- 23 T. Kasuya, Prog. Theor. Phys. 16, 45 (1956). 10.1143/PTP.16.45 Crossref, Google Scholar
- 24 K. Yosida, Phys. Rev. 106, 893 (1957). 10.1103/PhysRev.106.893 Crossref, Google Scholar
- 25 Y. Akagi and Y. Motome, J. Phys. Soc. Jpn. 79, 083711 (2010). 10.1143/JPSJ.79.083711 Link, Google Scholar
- 26 K. Barros and Y. Kato, Phys. Rev. B 88, 235101 (2013). 10.1103/PhysRevB.88.235101 Crossref, Google Scholar
- 27 S. Hayami and Y. Motome, Phys. Rev. B 90, 060402 (2014). 10.1103/PhysRevB.90.060402 Crossref, Google Scholar
- 28 R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118, 147205 (2017). 10.1103/PhysRevLett.118.147205 Crossref, Google Scholar
- 29 S. Hayami and Y. Motome, Phys. Rev. B 99, 094420 (2019). 10.1103/PhysRevB.99.094420 Crossref, Google Scholar
- 30 G. G. Marcus, D.-J. Kim, J. A. Tutmaher, J. A. Rodriguez-Rivera, J. O. Birk, C. Niedermeyer, H. Lee, Z. Fisk, and C. L. Broholm, Phys. Rev. Lett. 120, 097201 (2018). 10.1103/PhysRevLett.120.097201 Crossref, Google Scholar
- 31 R. Takagi, J. White, S. Hayami, R. Arita, D. Honecker, H. Rønnow, Y. Tokura, and S. Seki, Sci. Adv. 4, eaau3402 (2018). 10.1126/sciadv.aau3402 Crossref, Google Scholar
- 32 T. Kurumaji, T. Nakajima, M. Hirschberger, A. Kikkawa, Y. Yamasaki, H. Sagayama, H. Nakao, Y. Taguchi, T.-h. Arima, and Y. Tokura, Science 365, 914 (2019). 10.1126/science.aau0968 Crossref, Google Scholar
- 33 M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa, T. Kurumaji, M. Kriener, Y. Yamasaki, H. Sagayama, H. Nakao, K. Ohishi, K. Kakurai, Y. Taguchi, X. Yu, T. Arima, and Y. Tokura, arXiv:1812.02553. Google Scholar
- 34 C. Zener, Phys. Rev. 82, 403 (1951). 10.1103/PhysRev.82.403 Crossref, Google Scholar
- 35 P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955). 10.1103/PhysRev.100.675 Crossref, Google Scholar
- 36 P. G. de Gennes, Phys. Rev. 118, 141 (1960). 10.1103/PhysRev.118.141 Crossref, Google Scholar
- 37 M. Mostovoy, Phys. Rev. Lett. 94, 137205 (2005). 10.1103/PhysRevLett.94.137205 Crossref, Google Scholar
- 38 M. Mostovoy, J. Phys.: Condens. Matter 17, S753 (2005). 10.1088/0953-8984/17/11/004 Crossref, Google Scholar
- 39 S. Ishiwata, M. Tokunaga, Y. Kaneko, D. Okuyama, Y. Tokunaga, S. Wakimoto, K. Kakurai, T. Arima, Y. Taguchi, and Y. Tokura, Phys. Rev. B 84, 054427 (2011). 10.1103/PhysRevB.84.054427 Crossref, Google Scholar
- 40 S. Ishiwata, T. Nakajima, J.-H. Kim, D. S. Inosov, N. Kanazawa, J. S. White, J. L. Gavilano, R. Georgii, K. Seemann, G. Brandl, P. Manuel, D. D. Khalyavin, S. Seki, Y. Tokunaga, M. Kinoshita, Y. W. Long, Y. Kaneko, Y. Taguchi, T. Arima, B. Keimer, and Y. Tokura, arXiv:1806.02309. Google Scholar
- 41 P. C. Rogge, R. J. Green, R. Sutarto, and S. J. May, Phys. Rev. Mater. 3, 084404 (2019). 10.1103/PhysRevMaterials.3.084404 Crossref, Google Scholar
- (42) We confirmed that the double-Q chiral stripe state presented in the following is also stabilized when we consider an itinerant \(d_{x^{2} - y^{2}}\) orbital instead of \(d_{3z^{2} - r^{2}}\). Google Scholar
- (43) For example, the continuous phase transition between the FM state and the single-Q spiral state is found when the Fermi level lies at the lowest spin-down band in the FM state. See also Fig. 3(a). Google Scholar
- 44 S. Kumar and J. van den Brink, Phys. Rev. Lett. 105, 216405 (2010). 10.1103/PhysRevLett.105.216405 Crossref, Google Scholar
- 45 D. F. Agterberg and S. Yunoki, Phys. Rev. B 62, 13816 (2000). 10.1103/PhysRevB.62.13816 Crossref, Google Scholar
- (46) The energy gain in the G(B)-2Q state compared to the G(B)-1Q state is given by \(J_{\text{SE}}\frac{b^{4}}{8}\cos \phi \sin ^{2}\phi \) (\( - J_{\text{SE}}\frac{b^{4}}{16}\sin ^{2}\phi \)), which means the G-2Q for \(\phi < \frac{\pi }{2}\) state is stabilized by JSE, while the G-2Q state \(\phi > \frac{\pi }{2}\) and the B-2Q state are destabilized. Google Scholar