J. Phys. Soc. Jpn. 89, 013702 (2020) [5 Pages]
LETTERS

Double-Q Chiral Stripe in the dp Model with Strong Spin–Charge Coupling

+ Affiliations
Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

We investigate the stability of multiple-Q spiral states in dp electron systems with the strong spin–charge coupling. By using variational calculations on a square lattice, we find that the double-Q state with the scalar chirality density wave, which has been studied in the weak spin–charge coupling regime, becomes the ground state even in the strong spin–charge coupling regime by considering the effect of the dp hybridization. We also show that the regions where the double-Q state is stabilized are widely extended for introducing the antiferromagnetic superexchange interaction between nearest-neighbor localized spins.

©2020 The Physical Society of Japan

References

  • 1 D. Loss and P. M. Goldbart, Phys. Rev. B 45, 13544 (1992). 10.1103/PhysRevB.45.13544 CrossrefGoogle Scholar
  • 2 J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar, and Z. Tešanović, Phys. Rev. Lett. 83, 3737 (1999). 10.1103/PhysRevLett.83.3737 CrossrefGoogle Scholar
  • 3 K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62, R6065 (2000). 10.1103/PhysRevB.62.R6065 CrossrefGoogle Scholar
  • 4 R. Shindou and N. Nagaosa, Phys. Rev. Lett. 87, 116801 (2001). 10.1103/PhysRevLett.87.116801 CrossrefGoogle Scholar
  • 5 Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y. Tokura, Science 291, 2573 (2001). 10.1126/science.1058161 CrossrefGoogle Scholar
  • 6 I. Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008). 10.1103/PhysRevLett.101.156402 CrossrefGoogle Scholar
  • 7 Y. Kato, I. Martin, and C. D. Batista, Phys. Rev. Lett. 105, 266405 (2010). 10.1103/PhysRevLett.105.266405 CrossrefGoogle Scholar
  • 8 C. D. Batista, S.-Z. Lin, S. Hayami, and Y. Kamiya, Rep. Prog. Phys. 79, 084504 (2016). 10.1088/0034-4885/79/8/084504 CrossrefGoogle Scholar
  • 9 I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958). 10.1016/0022-3697(58)90076-3 CrossrefGoogle Scholar
  • 10 T. Moriya, Phys. Rev. 120, 91 (1960). 10.1103/PhysRev.120.91 CrossrefGoogle Scholar
  • 11 U. K. Rößler, A. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006). 10.1038/nature05056 CrossrefGoogle Scholar
  • 12 B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96, 207202 (2006). 10.1103/PhysRevLett.96.207202 CrossrefGoogle Scholar
  • 13 S. D. Yi, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 80, 054416 (2009). 10.1103/PhysRevB.80.054416 CrossrefGoogle Scholar
  • 14 R. Keesman, A. O. Leonov, P. van Dieten, S. Buhrandt, G. T. Barkema, L. Fritz, and R. A. Duine, Phys. Rev. B 92, 134405 (2015). 10.1103/PhysRevB.92.134405 CrossrefGoogle Scholar
  • 15 T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108, 017206 (2012). 10.1103/PhysRevLett.108.017206 CrossrefGoogle Scholar
  • 16 A. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015). 10.1038/ncomms9275 CrossrefGoogle Scholar
  • 17 S.-Z. Lin and S. Hayami, Phys. Rev. B 93, 064430 (2016). 10.1103/PhysRevB.93.064430 CrossrefGoogle Scholar
  • 18 S. Hayami, S.-Z. Lin, and C. D. Batista, Phys. Rev. B 93, 184413 (2016). 10.1103/PhysRevB.93.184413 CrossrefGoogle Scholar
  • 19 Y. Akagi, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 108, 096401 (2012). 10.1103/PhysRevLett.108.096401 CrossrefGoogle Scholar
  • 20 R. Ozawa, S. Hayami, K. Barros, G.-W. Chern, Y. Motome, and C. D. Batista, J. Phys. Soc. Jpn. 85, 103703 (2016). 10.7566/JPSJ.85.103703 LinkGoogle Scholar
  • 21 S. Hayami, R. Ozawa, and Y. Motome, Phys. Rev. B 95, 224424 (2017). 10.1103/PhysRevB.95.224424 CrossrefGoogle Scholar
  • 22 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 10.1103/PhysRev.96.99 CrossrefGoogle Scholar
  • 23 T. Kasuya, Prog. Theor. Phys. 16, 45 (1956). 10.1143/PTP.16.45 CrossrefGoogle Scholar
  • 24 K. Yosida, Phys. Rev. 106, 893 (1957). 10.1103/PhysRev.106.893 CrossrefGoogle Scholar
  • 25 Y. Akagi and Y. Motome, J. Phys. Soc. Jpn. 79, 083711 (2010). 10.1143/JPSJ.79.083711 LinkGoogle Scholar
  • 26 K. Barros and Y. Kato, Phys. Rev. B 88, 235101 (2013). 10.1103/PhysRevB.88.235101 CrossrefGoogle Scholar
  • 27 S. Hayami and Y. Motome, Phys. Rev. B 90, 060402 (2014). 10.1103/PhysRevB.90.060402 CrossrefGoogle Scholar
  • 28 R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118, 147205 (2017). 10.1103/PhysRevLett.118.147205 CrossrefGoogle Scholar
  • 29 S. Hayami and Y. Motome, Phys. Rev. B 99, 094420 (2019). 10.1103/PhysRevB.99.094420 CrossrefGoogle Scholar
  • 30 G. G. Marcus, D.-J. Kim, J. A. Tutmaher, J. A. Rodriguez-Rivera, J. O. Birk, C. Niedermeyer, H. Lee, Z. Fisk, and C. L. Broholm, Phys. Rev. Lett. 120, 097201 (2018). 10.1103/PhysRevLett.120.097201 CrossrefGoogle Scholar
  • 31 R. Takagi, J. White, S. Hayami, R. Arita, D. Honecker, H. Rønnow, Y. Tokura, and S. Seki, Sci. Adv. 4, eaau3402 (2018). 10.1126/sciadv.aau3402 CrossrefGoogle Scholar
  • 32 T. Kurumaji, T. Nakajima, M. Hirschberger, A. Kikkawa, Y. Yamasaki, H. Sagayama, H. Nakao, Y. Taguchi, T.-h. Arima, and Y. Tokura, Science 365, 914 (2019). 10.1126/science.aau0968 CrossrefGoogle Scholar
  • 33 M. Hirschberger, T. Nakajima, S. Gao, L. Peng, A. Kikkawa, T. Kurumaji, M. Kriener, Y. Yamasaki, H. Sagayama, H. Nakao, K. Ohishi, K. Kakurai, Y. Taguchi, X. Yu, T. Arima, and Y. Tokura, arXiv:1812.02553. Google Scholar
  • 34 C. Zener, Phys. Rev. 82, 403 (1951). 10.1103/PhysRev.82.403 CrossrefGoogle Scholar
  • 35 P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955). 10.1103/PhysRev.100.675 CrossrefGoogle Scholar
  • 36 P. G. de Gennes, Phys. Rev. 118, 141 (1960). 10.1103/PhysRev.118.141 CrossrefGoogle Scholar
  • 37 M. Mostovoy, Phys. Rev. Lett. 94, 137205 (2005). 10.1103/PhysRevLett.94.137205 CrossrefGoogle Scholar
  • 38 M. Mostovoy, J. Phys.: Condens. Matter 17, S753 (2005). 10.1088/0953-8984/17/11/004 CrossrefGoogle Scholar
  • 39 S. Ishiwata, M. Tokunaga, Y. Kaneko, D. Okuyama, Y. Tokunaga, S. Wakimoto, K. Kakurai, T. Arima, Y. Taguchi, and Y. Tokura, Phys. Rev. B 84, 054427 (2011). 10.1103/PhysRevB.84.054427 CrossrefGoogle Scholar
  • 40 S. Ishiwata, T. Nakajima, J.-H. Kim, D. S. Inosov, N. Kanazawa, J. S. White, J. L. Gavilano, R. Georgii, K. Seemann, G. Brandl, P. Manuel, D. D. Khalyavin, S. Seki, Y. Tokunaga, M. Kinoshita, Y. W. Long, Y. Kaneko, Y. Taguchi, T. Arima, B. Keimer, and Y. Tokura, arXiv:1806.02309. Google Scholar
  • 41 P. C. Rogge, R. J. Green, R. Sutarto, and S. J. May, Phys. Rev. Mater. 3, 084404 (2019). 10.1103/PhysRevMaterials.3.084404 CrossrefGoogle Scholar
  •   (42) We confirmed that the double-Q chiral stripe state presented in the following is also stabilized when we consider an itinerant \(d_{x^{2} - y^{2}}\) orbital instead of \(d_{3z^{2} - r^{2}}\). Google Scholar
  •   (43) For example, the continuous phase transition between the FM state and the single-Q spiral state is found when the Fermi level lies at the lowest spin-down band in the FM state. See also Fig. 3(a). Google Scholar
  • 44 S. Kumar and J. van den Brink, Phys. Rev. Lett. 105, 216405 (2010). 10.1103/PhysRevLett.105.216405 CrossrefGoogle Scholar
  • 45 D. F. Agterberg and S. Yunoki, Phys. Rev. B 62, 13816 (2000). 10.1103/PhysRevB.62.13816 CrossrefGoogle Scholar
  •   (46) The energy gain in the G(B)-2Q state compared to the G(B)-1Q state is given by \(J_{\text{SE}}\frac{b^{4}}{8}\cos \phi \sin ^{2}\phi \) (\( - J_{\text{SE}}\frac{b^{4}}{16}\sin ^{2}\phi \)), which means the G-2Q for \(\phi < \frac{\pi }{2}\) state is stabilized by JSE, while the G-2Q state \(\phi > \frac{\pi }{2}\) and the B-2Q state are destabilized. Google Scholar