J. Phys. Soc. Jpn. 90, 124708 (2021) [11 Pages]
FULL PAPERS

Disentangling Orbital Magnetic Susceptibility with Wannier Functions

+ Affiliations
1International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan2Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan3Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo, Tokyo 113-8654, Japan

Orbital magnetic susceptibility involves rich physics such as interband effects despite of its conceptual simplicity. In order to appreciate the rich physics related to the orbital magnetic susceptibility, it is essential to derive a formula to decompose the susceptibility into the contributions from each band. Here, we propose a scheme to perform this decomposition using the modified Wannier functions. The derived formula nicely decomposes the susceptibility into intraband and interband contributions, and from the other aspect, into itinerant and local contributions. The validity of the formula is tested in a couple of simple models. Interestingly, it is revealed that the quality of the decomposition depends on the degree of localization of the used Wannier functions. The formula here complements another formula using Bloch functions, or the formula derived in the semiclassical theory, which deepens our understanding of the orbital magnetic susceptibility and may serve as a foundation of a better computational method. The relationship to the Berry curvature in the present scheme is also clarified.

©2021 The Physical Society of Japan

References

  • 1 R. Peierls, Z. Phys. 80, 763 (1933). 10.1007/BF01342591 CrossrefGoogle Scholar
  • 2 Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. B 91, 214405 (2015). 10.1103/PhysRevB.91.214405 CrossrefGoogle Scholar
  • 3 F. Piéchon, A. Raoux, J.-N. Fuchs, and G. Montambaux, Phys. Rev. B 94, 134423 (2016). 10.1103/PhysRevB.94.134423 CrossrefGoogle Scholar
  • 4 L. Wehrli, Physik der kondensierten Materie 8, 87 (1968). 10.1007/BF02422734 CrossrefGoogle Scholar
  • 5 H. Fukuyama and R. Kubo, J. Phys. Soc. Jpn. 28, 570 (1970). 10.1143/JPSJ.28.570 LinkGoogle Scholar
  • 6 S. Suetsugu, K. Kitagawa, T. Kariyado, A. W. Rost, J. Nuss, C. Mühle, M. Ogata, and H. Takagi, Phys. Rev. B 103, 115117 (2021). 10.1103/PhysRevB.103.115117 CrossrefGoogle Scholar
  • 7 I. Tateishi, V. Könye, H. Matsuura, and M. Ogata, Phys. Rev. B 104, 035113 (2021). 10.1103/PhysRevB.104.035113 CrossrefGoogle Scholar
  • 8 Y. Tada, arXiv:2106.04071. Google Scholar
  • 9 E. N. Adams, Phys. Rev. 89, 633 (1953). 10.1103/PhysRev.89.633 CrossrefGoogle Scholar
  • 10 J. E. Hebborn and E. H. Sondheimer, Phys. Rev. Lett. 2, 150 (1959). 10.1103/PhysRevLett.2.150 CrossrefGoogle Scholar
  • 11 J. Hebborn and E. Sondheimer, J. Phys. Chem. Solids 13, 105 (1960). 10.1016/0022-3697(60)90131-1 CrossrefGoogle Scholar
  • 12 E. I. Blount, Phys. Rev. 126, 1636 (1962). 10.1103/PhysRev.126.1636 CrossrefGoogle Scholar
  • 13 L. Roth, J. Phys. Chem. Solids 23, 433 (1962). 10.1016/0022-3697(62)90083-5 CrossrefGoogle Scholar
  • 14 J. Hebborn, J. Luttinger, E. Sondheimer, and P. Stiles, J. Phys. Chem. Solids 25, 741 (1964). 10.1016/0022-3697(64)90186-6 CrossrefGoogle Scholar
  • 15 G. H. Wannier and U. N. Upadhyaya, Phys. Rev. 136, A803 (1964). 10.1103/PhysRev.136.A803 CrossrefGoogle Scholar
  • 16 S. Ichimaru, J. Phys. Soc. Jpn. 20, 520 (1965). 10.1143/JPSJ.20.520 LinkGoogle Scholar
  • 17 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955). 10.1103/PhysRev.97.869 CrossrefGoogle Scholar
  • 18 H. Fukuyama, Prog. Theor. Phys. 45, 704 (1971). 10.1143/PTP.45.704 CrossrefGoogle Scholar
  • 19 M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 84, 124708 (2015). 10.7566/JPSJ.84.124708 LinkGoogle Scholar
  • 20 M. Ogata, J. Phys. Soc. Jpn. 85, 064709 (2016). 10.7566/JPSJ.85.064709 LinkGoogle Scholar
  • 21 H. Matsuura and M. Ogata, J. Phys. Soc. Jpn. 85, 074709 (2016). 10.7566/JPSJ.85.074709 LinkGoogle Scholar
  • 22 J. M. Luttinger, Phys. Rev. 84, 814 (1951). 10.1103/PhysRev.84.814 CrossrefGoogle Scholar
  • 23 M. Koshino and T. Ando, Phys. Rev. B 76, 085425 (2007). 10.1103/PhysRevB.76.085425 CrossrefGoogle Scholar
  • 24 A. Raoux, F. Piéchon, J.-N. Fuchs, and G. Montambaux, Phys. Rev. B 91, 085120 (2015). 10.1103/PhysRevB.91.085120 CrossrefGoogle Scholar
  • 25 G. Gómez-Santos and T. Stauber, Phys. Rev. Lett. 106, 045504 (2011). 10.1103/PhysRevLett.106.045504 CrossrefGoogle Scholar
  • 26 A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, and G. Montambaux, Phys. Rev. Lett. 112, 026402 (2014). 10.1103/PhysRevLett.112.026402 CrossrefGoogle Scholar
  • 27 S. Ozaki and M. Ogata, Phys. Rev. Res. 3, 013058 (2021). 10.1103/PhysRevResearch.3.013058 CrossrefGoogle Scholar
  • 28 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997). 10.1103/PhysRevB.56.12847 CrossrefGoogle Scholar
  • 29 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984). 10.1103/PhysRevLett.53.2449 CrossrefGoogle Scholar
  • 30 C.-Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. Lett. 98, 186809 (2007). 10.1103/PhysRevLett.98.186809 CrossrefGoogle Scholar
  • 31 L.-H. Wu and X. Hu, Sci. Rep. 6, 24347 (2016). 10.1038/srep24347 CrossrefGoogle Scholar
  • 32 T. Kariyado and X. Hu, Sci. Rep. 7, 16515 (2017). 10.1038/s41598-017-16334-0 CrossrefGoogle Scholar
  • 33 M. Kargarian and G. A. Fiete, Phys. Rev. B 82, 085106 (2010). 10.1103/PhysRevB.82.085106 CrossrefGoogle Scholar
  • 34 T. Kariyado and Y. Hatsugai, Phys. Rev. B 90, 085132 (2014). 10.1103/PhysRevB.90.085132 CrossrefGoogle Scholar
  • 35 E. Blount, Formalisms of Band Theory (Academic Press, New York, 1962) Solid State Physics, Vol. 13, p. 305. CrossrefGoogle Scholar
  • 36 K.-T. Chen and P. A. Lee, Phys. Rev. B 84, 205137 (2011). 10.1103/PhysRevB.84.205137 CrossrefGoogle Scholar