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A system of equations u,+ (1%/2+ att, + B, ), =0 (m, n: positive integers, f#0) is
studied by means of Hirota’s method and the singular manifold expansion. The
singular manifold expansion yields the transformation of the system into bilinear
forms or higher order ones and we obtain some explicit solutions of the system in
physically interesting but non-integrable cases.

§1. Introduction

A unique method is developed by Hirota?
to find explicit solutions of nonlinear partial
differential equations (p.d.e.’s). The method
applies not only to integrable p.d.e.’s but also
to non-integrable ones. In the integrable case,
N-soliton solutions are obtained by means of
the method, and some exact solutions are
found even in the non-integrable case. A
crucial procedure of the method is to make the
appropriate transformation of the p.d.e. con-
cerned into bilinear forms. However, there are
no systematic ways to find the transformation.

Weiss et al. employed the singular manifold
expansion to examine the Painleve property
and derived the Bicklund transformation by
truncating the expansion.? The relation be-
tween the singular manifold and the Hirota’s
function in bilinear forms was established in
the integrable case by Gibbon et al.?

In this paper, we derive the transformation
of the following system of generally non-in-
tegrable p.d.e.’s:

U+ U 24 i+ Buine)r=0, (4]

into bilinear forms or higher order ones,
where m, n are integers (m<n) and o, B are
constant (f#0). The transformation is in-
troduced by the truncation of the singular
manifold expansion at a different level from
that of Weiss. The system (1) includes both in-
tegrable p.d.e.’s (the K-dV and Burgers equa-
tions) and non-integrable p.d.e.’s such as the
K-dV-Burgers, Kuramoto? and fifth-order
dispersive K-dV equations. In the next section,
the integrable case is discussed as an example.

In §3, the transformation of non-in-
tegrable p.d.e.’s is derived and some explicit
solutions are given.

§2. Integrable Case

In this section, we consider the case in
which =0, n=2 (K-dV) and a=0, n=1
(Burgers) and recover Hirota’s transforma-
tion? and the Cole-Hopf transformation, respec-
tively. The singular manifold expansion is in-
troduced by assuming that u can be expanded
as

u=9¢~" 3 u;¢’, )

Jj=0

where u; and ¢ are functions of independent
variables and ¢ determines a singular
manifold.? On substitution of eq. (2) into eq.
(1), the leading order is easily seen to be r=2,
o= —12p¢2 for the K-dV equation and r=1,
uo=2B¢, for the Burgers equation. The higher
order terms yield u;’s (j=1) recursively except
at resonances. Let us truncate the expansion
so that u;=0 for j>r—1, then we have
u;=12B¢2,, ;=0 (j>1) for the K-dV equa-
tion and ;=0 (j>0) for the Burgers equa-
tion. Thus, we have Hirota’s transformation
u=128(In ¢),, and the Cole-Hopf transforma-
tion u=28(In ¢),. In order that the truncation
be valid, the following conditions are respec-
tively required:

{D:D,+BD*} (¢ ¢)=0 (K-dV), (3)
¢+ Bo=0 (Burgers),

where eq.. (3) is the well-known Hirota’s
bilinear form of the K-dV equation and Dy, D,
are Hirota’s bilinear operators defined by

3052


http://crossmark.crossref.org/dialog/?doi=10.1143%2FJPSJ.56.3052&domain=pdf&date_stamp=2013-11-29

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by Massachusetts Institute of Technology on 05/18/24

1987)

16 0)= (22 Vo occ
D16 0= (&3 | ot0tx) |
It should be noted that Weiss et al. truncate
the expansion such that #,=0 (j>r), and ob-
tain the Bicklund transformation.?

§3. Non-Integrable Case

Even in the non-integrable case, we apply
the same rule of truncation as that in the in-
tegrable case, that is, #;,=0 for j>r—1, and
obtain useful transformations.

(1) K-dV-Burgers equation:
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u+ %2+ o+ Buz)=0.

The leading order is seen to be r=2,
up=—12p¢2 and the next order terms give
u1=12B¢».+(12a/5)¢.. By setting ;=0 for
Jj>1, we have

u=12B(In ¢)2x+(122/ 5)(In ¢)x, “

which is the linear combination of Hirota’s
transformation and the Cole-Hopf transfor-
mation. As the condition necessary for the
truncation, we obtain

{D:Di+BD3} (¢ 9) = (a*/258) Di( - §) + (120t/ 5) Dx(¢2x* $) = — 2t/ 5B)d (1 + 6/ 5). O]

It is easy to see that ¢=1-+exp (kx+wt) is a solution of eq. (5), where w= —6ak?/5 and
k= £ a/(58). Using the transformation (4), we have a solution of the K-dV-Burgers equation in
the form of superposition of a soliton and a shock:

u=3pk?*sech® {(kx+wt)/2} +(12a/5)k exp (kx+wt)/ {1+exp (kx+wt)}.

(2) Kuramoto equation:

u,+ W2/ 2+ au,— Busy),=0.

In this case, we have r=3, uo=—1208¢3, u;=1808¢.¢2, and u,= — 603, + 60,/ 19. Accord-
ing to the truncation rule, we set u;=0 (j>2) and have a transformation

u=608(In ¢);,+60c(In ¢),/19. 6)

Then, the Kuramoto equation is transformed into the higher order form
{ad®/19—BDU$ - &)} (¢:+ 3002/ 19) + S D {(d:+ 3002,/ 19) - ¢} — 11(ce/ 19’ D3 - )
—10aDY$ - $)/19—308°Di(¢2x" $2:) + BDY - $)1+ 308D, (DX ) - d:} =0, (7

which may be called a trilinear form. The two explicit solutions of eq. (7) are obtained as

¢=1-+exp (kx+ wt),

and
¢=E++E_,
k)*=—a/(198) or

E.=exp (xkx+wt),
2k)Y’=11a/(198). )

w==30ak*/19, k*=—a/(198) or k*=11a/(19B), ®)

w=—30ak?/19,

From egs. (6) and (8), we have a propagating shock solution
u=(60/19)ak exp (kx+wt)/ {1+exp (kx+wt)} + 156k tanh {(kx+w?)/2} sech?{(kx+ wt)/2}.

The colliding shock solution found by Kuramoto et al.” is recovered from egs. (6) and (9):
u=(60/19)ak tanh kx— 1208k * sech?kx tanh kx.
(3) K-dV equation with the fifth order dispersion:
u+ (U 2+ attze+ Buay),=0.

Following the same procedure as given above, we obtain a transformation

u=280{A(In ¢)sx+a(ln ¢)/13},

(10)
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and a tetralinear form
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¢*{D:D; +D§(ﬁD§+a)} {BD3+a/13}(¢-¢)—3BDi(¢ $)D: D¢ $) +A7[35 {Di(¢- 9)}

—28Di(¢$) D¢ $)I — 7003/ 13DX(¢ - $)D(¢ $)+31(a/ 13)* { DX - $)} *=O0.

When «f<0, it is found that eq. (11) has a
solution ¢=1+exp (kx+wi?), w=-—36pk°
and k*>=—a/(138). The transformation (10)
gives »

u=—105(cc/13)*/ B sech* {(kx+ wt)/2},

which is obtained by means of a different
method.®

§4. Concluding Remarks

The transformation obtained in previous
sections is easily generalized for arbitrary m
and n in eq. (1):

u=a(n @)+ b(n @)y,

where a and b are constant. Then, eq. (1) is
transformed into the n-th order homogeneous
equation with respect to ¢. We can also con-
sider the extended version of eq. (1)

u,+(u2/2+au,x+,3umx+ yunx)x=0- (12)

In the case that /=1, m=2 and n=3,” for ex-
ample, the singular manifold expansion yields
the transformation

(11

u=60y(In ¢)3,+ 158(In ¢)2x
+60(a.— 8%/16y)/19(In ¢),,

by which eq. (12) is transformed into the
similar trilinear form as eq. (7). However, no
explicit solutions of the trilinear form are
known yet.

Since eq. (1) is invariant for the Galilei
transformation

x'=x—vt, t'=t, u=u+tv,

a constant speed (v) is added to our solutions.
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