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Game dynamics with a mixed strategy player is studied. A new attracting set emerges under a
certain condition by introducing a mixed strategy into a system with a pure strategies system. In
terms of a replicator system, introducing a mixed strategy means to increase the number of rows
and columns of the interaction matrix by 1 without changing its rank size. As a result, a system
has a neutral dimension and a new attracting set emerges on the center manifold of a �xed point. A
possible scenario of evolution via a mixed strategy is brie�y discussed.
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A game theory de�nes a �nite n-person normal form
game as a set of n pure strategies with an associated
n� n payo� matrix. If strategy i is played against
strategy j, the expected payo� to strategy i is simply
given by Aij. Any mixed strategy assigns probabilities to
each pure strategy.

Maynard Smith had introduced a notion of evolu-
tionary game dynamics1) in which he considers the
population dynamics of players using pure/mixed
strategy. The simplest form of this dynamics was
developed by Maynard Smith2,3) and Taylor and
Jonker,4) and is now widely studied as the replicator
dynamics system.

The time evolution of replicator dynamics having n
pure strategies with the pay-o� matrix A is given by

_xxi ¼ xi

 X
j

Aijxj �
X
j;k

xjAjkxk

!
; ð1Þ

where xi denotes the relative frequency of the player
using pure strategy i. Hence the conditions

P
xi ¼ 1 and

xi � 0 should be satis�ed.
Some new and interesting behaviors of this dynamics

as a dynamical system have been found.5{8) In this letter,
we study a role of mixed strategy in the population of
pure strategies.

Previously, in the book of evolutionary game theory
by Maynard Smith,3) it has been argued that game
behaviors change depending on whether each player can
use a pure or a mixed strategy. An evolutionarily stable
strategy (ESS) is used for the solution concept of a game
system; when most individuals adopt the ESS strategy,
no mutant strategy can invade the population. However,
whether or not an ESS with only pure strategies ensures
a stable polymorphic population using mixed strategies
is not fully understood.9{11) As is discussed by Zeeman,9)

we should study the dynamics of a probability density
over a strategy space. While this density dynamics has

not been fully analyzed, some phenomenological studies
have been reported. Examples can be found in some
three-strategy games3,10) and more recently in the
prisoner’s game with one memory strategy.12) In the
former case, ESS disappears and in the latter case a new
ESS (as an equilibrium point) appears at a boundary. In
this letter, we report how a new attracting set, not
restricted to an equilibrium ESS, can emerge by having
mixed strategies.

In addition to the ESS arguments, mixed strategies are
important to study since they open up a new way of
understanding evolution. The original replicator system
has a �xed state space. Study of evolution requires
changing the state space or the updating of the
interaction matrix; however, we have no realistic way
of doing so (cf. Tokita and Yasutomi13)). Moreover, we
do not believe that evolution always creates a new
character. As Ohno14) and Jacob15) argue, the evolu-
tionary process can be taken as a bricolage; it does not
produce novelties from scratch but from recombinations
of old materials. We return to this point later, and
proceed to the analysis of replicator game dynamics with
a mixed strategy.

An extension of game dynamics to include mixed
strategies is straightforward. Here we assume that the
number of pure strategies (n) is �nite and that of mixed
strategies (m) is also �nite. The probability which the
mixed strategy k assigns to the pure strategy i is denoted
by ski . Hence the expected payo� associated with the
mixed strategy l is

P
i;j s

k
i Aijs

l
j, where sk and sl are n-

component vectors with the conditions ski � 0, sli � 0
and

Pn
i¼1 s

k
i ¼

Pn
i¼1 s

l
i ¼ 1. Using n-column vectors si

(i ¼ 1; . . . ;m) on a pure strategy space, we rewrite the
game dynamics as

_yyi ¼ yi

 X
j

tsiAsjyj �
X
j;k

yj
tsjAskyk

!
; ð2Þ

where yi denotes the relative frequency of a player using
strategy i. A pure strategy is de�ned as a vector whose
components have n� 1 zeros and a single unity element.
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Comparing eq. (2) with eq. (1), we notice that this
equation has a new interaction matrix Bij (¼ tsiAsj) and
is de�ned on them� 1 dimensional simplex instead of on
n� 1. Namely, the relative frequency of pure strategy xi

is now given by
P

j s
j
iyj. De�ning the n�m matrix S by

ðs1j � � � jsmÞ, we �nd the time evolution of x,

_xx ¼ S _yy ¼
X
i

siyi
tsiAx�t xAxð Þ

¼
X
i

yiðsi � xÞtðsi � xÞAx: ð3Þ

Time derivative _xx is generally determined by the
detailed structure of S.

A restriction of B by A, i.e., rankðBÞ � rankðAÞ,
e�ectively lowers the degrees of freedom of this
dynamics. Moreover, the sets of points which are
projected onto the equilibrium points of the original
equation, eq. (1), by S are the equilibrium points of eq.
(2) and they constitute an ðm� nÞ-dimension hyper-
plane on the simplex Sm�1. Let ~qq ¼ fyjyi ¼ qiði ¼
1; . . . ; nÞ; yi ¼ 0ði ¼ nþ 1; . . . ;mÞg, where q is an inter-
nal equilibrium point of the dynamics of eq. (1), si
(i ¼ 1; . . . ; n) are pure strategies (i.e., si ¼ fsjsi ¼
1; sj ¼ 0ðj 6¼ iÞg (i ¼ 1; . . . ; n)), and ~qq has ðn� 1Þ stable
directions on the simplex Sn�1 and ðm� nÞ neutral
directions on a hyperplane. Since the expected reward
when the state is on the hyperplane is exactly the same
as that of ~qq, mixed strategies can overtake the
population by chance. However, the dynamical beha-
viors may be quite di�erent along this hyperplane. As a
main focus of this letter, we report that a three-pure-
strategy game with two stable equilibriums (one at the
corner and one internally in three-dimensional strategy
space) can have an in�nite number of periodic solutions
consisting of mixed strategies when the internal equili-
brium point is not ESS. This clearly shows that
polymorphic solutions (mixed-strategy-involved) exhibit
qualitatively di�erent behaviors than solutions of pure
strategies. Below, we introduce a payo� matrix under a
certain condition and show that the above statement
holds.

The game matrix of an evolutionary game system,
with three-pure-strategies which have an internal
equilibrium point, can be translated into the following
form eq. (4). This translation does not change the
topological characteristics of �ows on the phase space.

A ¼
0 dþ a d� a

d� b 0 dþ b

dþ c d� c 0

0
B@

1
CA: ð4Þ

It is easily shown that this game system has a unique
internal equilibrium point q at 1

3 ð1; 1; 1Þ. By means of a
conventional linear stability analysis, we compute that a
necessary and su�cient condition for making q stable is

d > 0 and abþ bcþ ca > �d2; ð5Þ
and a necessary and su�cient condition for making q an
ESS is given by,

d > 0 and abþ bcþ ca > ða2 þ b2 þ c2Þ � 3d2: ð6Þ

Thus a necessary and su�cient condition for making q
stable but not an ESS is,

d > 0 and ða2 þ b2 þ c2Þ � 3d2 > abþ bcþ ca > �d2:

ð7Þ
Without loss of generality, we assume d ¼ 1. Under

condition (7), we particularly focus on the following
region where two saddles, which will be de�ned as r1 and
r2, appear.

a > 1; b > 1; c < �1 and bþ c > 0: ð8Þ
Because it is more complicated to prove the emergence of
a new attracting set in general cases, here we assume
condition (8). We have already con�rmed that our
argument here is valid in more general cases and the
detailed proof will be reported elsewhere.

Under conditions (7) and (8), this game system has six
equilibrium points (Fig. 1).

. p1 ¼ ð1; 0; 0Þ, p2 ¼ ð0; 1; 0Þ and p3 ¼ ð0; 0; 1Þ for the
pure strategies.

. r1 ¼ ð0; 1þb
2þb�c ;

1�c
2þb�cÞ on the line p2{p3 and

r2 ¼ ð 1�a
2�aþc ; 0;

1þc
2�aþcÞ on the line p3{p1 are equili-

brium points.
. q ¼ 1

3 ð1; 1; 1Þ is the internal equilibrium point.
And we notice that attractors are p1 and q, where p1 is

ESS (i.e., 8x ( 6¼ p1) 2 S2,
tp1Ap1 ¼ 0 > txAp1) but q is

not ESS. A basin boundary of p1 and q is given by a
heteroclinic orbit from p2 to r2.

Now we introduce a mixed strategy v ¼ ð0; 1� k; kÞ
using pure strategies 2 and 3. It is easy to extend this
mixed strategy to use three pure strategies, but for
simplicity we argue this two-pure-strategies case. Taking
this strategy as the fourth corner, we embed S2 onto S3

as shown in Fig. 2. The above equilibrium points are

r2

r1

p1

p2 p3

q

Fig. 1. Diagram of �ow structure on the simplex S2.There are two
stable equilibrium points p1 and q, and the basin boundary is given

by the heteroclinic orbit from p2 to r2.

p1

p2

p3

p4r1

r2

q
r3r5

q1

r4

v

Fig. 2. Equilibrium points and �ows on simplex S3. Lines ~vv{~pp4, ~rr1{~rr3
and ~qq{~qq0 are parallel to each other. Points on lines ~qq{~qq0 and ~rr1{~rr3 are

all equilibrium points. When the inequality k2ð2þ b� cÞ � 2kð1þ
a� cÞ þ ð2þ a� bÞ > 0 holds, ~rr4 and heteroclinic orbit ~qq0 ! ~rr4 do
not exist. In this case, ~pp4 is unstable in the direction ~pp4{~pp1.
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accordingly embedded as follows:
. ~pp1 ¼ ð1; 0; 0; 0Þ, ~pp2 ¼ ð0; 1; 0; 0Þ, ~pp3 ¼ ð0; 0; 1; 0Þ
. ~rr1 ¼ ð0; 1þb

2þb�c ;
1�c

2þb�c ; 0Þ, ~rr2 ¼ ð 1�a
2�aþc ; 0;

1þc
2�aþc ; 0Þ

. ~qq ¼ ð13 ; 13 ; 13 ; 0Þ and ~pp4 ¼ ð0; 0; 0; 1Þ.
A set of points which is projected onto the equilibrium

points by S of the pure strategy game system also
consists of equilibrium points of this system. Here ~qq{~qq0

and ~rr1{~rr3 thus constitute the equilibrium points where

~qq0 ¼ ð13 ; 0; 1�2k
3ð1�kÞ ;

1
3ð1�kÞÞ and ~rr3 ¼ ð0; 1� 1�c

kð2þb�cÞ ; 0;
1�c

kð2þb�cÞÞ. They are projected onto q and r1 respectively

by applying matrix S. We assume that parameter k
satis�es the condition

1

2
> k >

1� c

2þ b� c
; ð9Þ

so that ~rr3 is on ~pp2{~pp4 and ~qq0 is on the plane including ~pp1,
~pp3 and ~pp4. Under conditions (7), (8) and (9), ~qq0 is
unstable on the plane ~pp1{~pp3{~pp4. Since ~qq is stable on
plane ~pp1{~pp2{~pp3, stability perpendicular to line ~qq{~qq0

changes (see Fig. 2). Let us parameterize points on this
line ~qq{~qq0 by � (~qqð�Þ ¼ ð1� �Þ~qqþ �~qq0ð0 � � � 1Þ). From
simple calculation, we found the point at which stability
alternates at ~qq1 (¼ ~qqð�1Þ), where �1 ¼ 2

ð2þb�cÞk. In
particular, point ~qq1 is a center whose eigenvalues have
only imaginary parts.

There are several invariant curved surfaces, where no
�ows penetrating these curved surfaces exist. The
following argument mainly focuses on the basin bound-
ary between equilibrium points ~qq{~qq1 and ~pp1. These
correspond to the two equilibrium points of the original
game system. The neighbors around ~qq0 are attracted to
point ~pp1. Since ~qq{~qq1 are stable �xed points, their
neighbors are attracted to them. The basin boundary
should be penetrated by the line connecting ~qq and ~qq0. If
no other attractors exist in this system, neighbors
around ~qq{~qq1 are attracted to the points ~qq{~qq1 and those
around ~qq1{~qq

0 are attracted to ~pp1.
Surprisingly, the situation is rather complicated and

we have found a third attracting set. The existence of
this attracting set is found numerically �rst and then
con�rmed analytically to some extent.

A precise boundary structure is obtained by the �ow
structure around line ~qq{~qq0. We notice that a saddle point
~rr2 has a two dimensional stable manifold. This manifold
is a curved surface having two heteroclinic orbits on its
boundary, which are ~qq0 ! ~rr2 on plane ~pp1{~pp3{~pp4 and
~pp2 ! ~rr2 on plane ~pp1{~pp2{~pp3 (see Fig. 2). We de�ne � as
this stable manifold of ~rr2 below. � can be divided into
two regions, one consisting of heteroclinic orbits from ~pp2

and the other consisting of heteroclinic orbits from ~qqð�Þ
which are unstable. We label the former �1 and the
latter �2 (see Fig. 3).

The boundary of �1 and �2 is a heteroclinic orbit to ~rr2
from a point on line ~rr1{~rr3. We label this point ~rr5 below.
There exists a heteroclinic orbit from ~pp2 to ~rr5 and also a
heteroclinic orbit from ~pp3 to ~rr5. Thus �2 has a
heteroclinic cycle ~pp3 ! ~rr5 ! ~rr2 on its boundary, and
we call this heteroclinic cycle C.

Now we de�ne a new critical point ~qq2 ¼ ~qqð�2Þ on line
~qq{~qq0. There exists an orbit which starts from ~qq2 and

composes the boundary of �2. Judging from the facts
that ~qq1 is neutral, and that for � close to �1, ~qqð� < �1Þ is
stable and ~qqð� > �1Þ is unstable, we conclude that �2 is
larger than �1. Indeed, ~qq2 has an unstable manifold which
has the heteroclinic cycle C on its boundary. We call this
invariant curved surface �. Every point on � except ~qq2
converges to C.

Due to the center manifold theorem, we have at least
one center manifold through ~qq1. Let us call this invariant
surface �. Since ~qqð�Þ (� < �1) has stable directions and
~qqð�Þ (� > �1) has unstable directions, no point on � has
~qq1 as �-limit or !-limit set. Considering this and the fact
that � is two-dimensional, every orbit on � has to be
periodic. � has the heteroclinic cycle C as its boundary
because C is the unique closed orbit including the
boudary of the phase space. Thus, � is �lled densely with
periodic orbits.

We now have a region enclosed with � and �. Clearly,
orbits in this region converge to neither ~pp1 nor ~qq{~qq1 but
to some attracting set. Since every orbit near ~qq1 remains
in the neighbor of ~qq1 and since an unstable manifold of
~qqð�Þ (� > �1) is two-dimensional, an unstable manifold of
~qqð�Þ in the neighbor of ~qq1 has a periodic orbit on � as its
boundary. Since the unstable manifold of ~qq2 has C as its
boundary, and considering the continuity of �ow
structure, we see that every unstable manifold of ~qqð�1 <
� < �2Þ has a periodic orbit on � as its boundary.

As a result, we have found that center manifold � of ~qq1
has a basin whose volume is positive and � becomes a
new attracting set of the system.

We select the parameters under conditions (7){(9) as
a ¼ 5, b ¼ 27, c ¼ �3 and k ¼ 1

4, where we found �1 ¼ 1
4.

Numerically, point ~qq2 is found at �2 ’ 0:3.
We found that above �1 and under �2, there are regions

which do not converge to ~pp1 but converge to certain
periodic solutions (Fig. 4). An example of an initial state
which converges to the periodic orbit is depicted in
Fig. 5.

We found that this attracting set has an uncountable
in�nite number of cycles on � standing in line around ~qq1.
It is bounded by the heteroclinic cycle C. This situation
is depicted in Fig. 6.

As we mentioned earlier, if a three-strategy game has a
non-ESS internal stable equilibrium point, we can
always select a mixed strategy that generates an
attracting set internally, consisting of an in�nite number
of periodic orbits. Discussions on the generic cases will be

p1

p2

p3

p4r1

r2

r5

q21

2

Fig. 3. � : A stable manifold of ~rr2. � is divided into two regions, �1

and �2. �1 is a set of heteroclinic orbits which starts from ~pp2. �2 is a
set of heteroclinic orbits which starts from ~qqð�Þ. Their boundary is a

heteroclinic orbit from ~rr5 to ~rr2.
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reported elsewhere.
In this study, we have found a new attracting set by

introducing a mixed strategy into game dynamics. A new
strategy does not mean bringing a new action into the
game system. It is no more than a stochastic combina-
tion of already existing actions. The game structure itself
does not change, but the behavior changes nevertheless.

Attractors in the original system are all equilibrium
points. However, a newly emerging attracting set
consists of an in�nite number of periodic cycles. This
means that the e�ective degrees of freedom of the system
have been increased by introducing a mixed strategy
without changing the game structure itself.

The original system has an internal equilibrium point
which is stable. The introduced strategy is a mixed
strategy of two pure strategies; however, an equilibrium
between the new strategy and the two pure strategies is
set unstable. Such a situation occurs generally where the
internal equilibrium point is stable but not an ESS (on

the other hand, where the internal stable equilibrium
point is an ESS, this situation never occurs). Therefore,
the new attracting set found in this study is not a special
case. Rather, it is a general characteristic of a game with
mixed strategies. We have shown that a mixed strategy
may expand the dimensionality of an attractor to form a
new solution set, which was not discussed by Maynard
Smith or in other related works.2)

From the point of view of evolutionary biology,
introducing a mixed strategy may be considered as an
appearance of a mutant whose character can be
described merely by a recombination of the characters
of pre-existing species. This situation corresponds to
increasing the size of the interaction matrix without
changing its rank size. When the system is at the internal
equilibrium point, the mutant can invade and overtake
the population by chance since the mutant has the same
�tness (payo�). The appearance of a mutant often
changes the structures of attractors; however, a com-
pletely new character is not required for a mutant to
overtake the population.

We should discuss several other important situations:
what happens if 1) more than one mixed strategy is
introduced, 2) the internal attractors are not equilibrium
points (e.g., a limit cycle or quasi-periodic state) and 3)
the stability of ~qq and ~qq0 is reversed. These discussions
will be reported elsewhere.
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Fig. 5. An orbit converging to a new periodic motion. The initial
state of this orbit is at ð 5

20 ;
6
20 ;

6
20 ;

3
20Þ. The orbit is plotted in S3 in (a),

and the orbit is projected by Sy onto S2 in (b).

Fig. 6. The in�nite number of periodic cycles constitutes an attract-
ing set. They are projected onto S2 by Sy in (b).
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Fig. 4. �{y1: y1 values of an orbit whose initial point is in the neighbor

of ~qqð�Þ are plotted against � after a su�ciently long period of time.
Orbits which started from the neighbors of ~qqð� < �1Þ are attracted to
~qqð� < �1Þ and orbits which started from the neighbors of ~qqð� > �2Þ
are attracted to ~pp1.
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