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We formulate the third harmonic generation (THG) within the dynamical mean field theory (DMFT)
approximation of the Hubbard model. In the limit of large dimensions, where DMFT becomes exact, the
vertex corrections to current vertices are identically zero. Hence, the calculation of the THG spectrum
reduces to a time-ordered convolution, followed by an appropriate analytic continuation. We present
a typical THG spectrum of the Hubbard model obtained by this method. Within our DMFT calculation,
we observe a nontrivial approximate scaling function describing the THG spectra in all Mott insulators,
independent of the gap magnitude.
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Nonlinear optical interactions of laser fields with matter
provide powerful spectroscopic tools for the understanding
of microscopic processes. The ability to control pulse
durations (to a few femtoseconds), bandwidths (up to 1 Hz
resolution), and peak intensities (up to 1019 W/cm2) pro-
vides novel methods of investigation for elementary dy-
namic events occuring in matter.1)

Observation of a large third order nonlinear susceptibility
in a quasi 1D Mott insulator Sr2CuO3 (�ð3Þ values in the
range 10�8 to 10�5 e.s.u.)4,5) poses the problem of nonlinear
optical response in correlated insulators.

In systems with large on-site Coulomb interactions, the
1D system has the largest optical nonlinearity because of
the decoupling of spin and charge degrees of freedom.6,7) On
the other hand, mean field analysis shows that among SDW-
ordered systems, the largest third order optical response
appears in 2D.3) However, a mean field treatment of this
manner does not address the Mott insulators considered
in the experiments of ref. 4. Therefore, we employ the
dynamical mean field theory (DMFT) approximation to
formulate the nonlinear optical response of the Mott
insulators.

DMFT approximation becomes exact in d!1. In this
limit, the self-energy becomes a purely local quantity
determined by the self-consistent Anderson model. Then,
the matrix elements determining spectral weights are
encoded in the local self-energy. In this limit, the matrix
element summations reduce to density of states (DOS)
integrations. Therefore, the combined DOS and self-energy
effects gives rise to the nonlinear optical response of the
system.

We formulate a nonlinear response theory, for THG
within the DMFT approximation and propose a numerically
feasible method to avoid expensive computations. To the
best of our knowledge, this is the first application of DMFT
to nonlinear optics.

The general THG lineshape within the DMFT framework
occurs as a strong peak in three-photon resonance, followed
by a shoulder in two-photon resonance, and a very weak
feature in one-photon resonance. If we scale the frequencies

with the gap magnitude, the three-photon contributions
obtained for various on-site Coulomb repulsion, fall
approximately on the same curve. This approximate behav-
ior in Mott insulators becomes exact in single-particle
insulators.3)

We start with the Hubbard model at half filling
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where cyis creates an electron at site i with spin s ¼";#. The
dimension of the lattice is d. Here, the 1=

ffiffiffi
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scaling of the
hopping term ensures that the average kinetic energy per
particle in the limit d!1 remains finite.8)

If we now imagine that we integrate out all degrees of
freedom on various lattice sites, except for the one at the
origin, we obtain the following effective action for this
‘‘impurity’’ site:
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Here, the impurity propagator G0ð� � �0Þ describes temporal
quantum fluctuations between the four possible states of
a single site at the origin, which must be determined self-
consistently.

The simplest way to solve an effective impurity problem
of this type is by the second order perturbation, which gives
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This gives the lattice Green’s function as

Gðk; i!nÞ ¼ 1=ði!n � "k ��ði!nÞÞ: ð4Þ

The projection of this function on site ‘‘o’’ is given by
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where Dð"Þ is the lattice density of states. Finally, the self-
consistency between the lattice (G) and impurity (G0) is
given by the Dyson equation

G�1
0 ði!nÞ ¼ �ði!nÞ þ G�1ði!nÞ; ð6Þ

which is used to update G0 if the consistency was not
achieved.8)

Solving the set of eqs. (3), (5), and (6) for various values
of Hubbard U, captures the physics of a Mott metal-to-
insulator transition.9) The essential many-body quantity
obtained by solving the local impurity problem is the self-
energy, which encodes the matrix element effects, as will
be shown in the following. We solve10) the above set of
equations at zero temperature for a Bethe lattice DOS of
type Dð"Þ ¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2
p

, which corresponds to renormalized
hopping ~tt ¼ t

ffiffiffi
d
p
¼ 1=2.

The third order nonlinear optical response per unit volume
is related to the four-current correlation �ð3Þj j ð!;!1; !2; !3Þ
by11)
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where ! ¼ �!� ¼ �ð!1 þ !2 þ !3Þ, and the four-current
correlation function is given by

�ð3Þj j ð!;!1; !2; !3Þ ¼
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where |ðxÞ is the current operator in space-time x ¼ ðr; tÞ.
Here, Tc denotes the time-ordering of the Keldysh path.12)

Although the general formulation can be expressed in
terms of Keldysh Green’s functions, for parametric proc-
esses,2) i.e., processes in which final and initial states are
identical, in practice one can avoid the use of Keldysh
Green’s functions. In such a case, one can use an ordinary
Green’s function to calculate the time ordered diagrams,
followed
by appropriate analytic continuation to ensure the correct
�þ i� behavior of the fully retarded optical responses.3)

The case of third harmonic generation corresponds to
!1 ¼ !2 ¼ !3 ¼ � such that we have
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The Feynman diagram corresponding to the THG proc-
ess13) is shown in Fig. 1. In the limit of infinite dimensions,
vertex corrections to odd parity operators identically vanish
by Ward identity. To verify this, we express the Ward
identity as14)

� ik	�
	ðpþ k; kÞ ¼ G�1ðpþ kÞ � G�1ðkÞ; ð9Þ

where the summation over 	 ¼ 0; 1; . . . ; d is understood and
p; k are (d þ 1)-vectors. Using the Dyson equation, the right-
hand side becomes �ðk þ pÞ ��ðkÞ. In the d!1 limit,
self-energy is purely local8) (no k dependence), and hence it
vanishes. Now, since the current (/ velocity) vertex has odd
parity under k!�k, the vertex correction �	 identically
vanishes.

Therefore, the four-current correlation h||||iTHGð�Þ in

Fig. 1 can be obtained by simple convolution. The Green’s
functions over the loop are self-consistent lattice Green’s
functions obtained from the impurity solver by iterated
perturbation theory.8) Now, let us further simplify
h||||iTHGð�Þ in the d!1 limit. Equation (8) can be
written as
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where we have used the fact that the current vertex in
direction no. 1 is 2~tt sinðk1Þ. To proceed further, we need to
define 
0ð"Þ ¼ 1
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where Jn is a Bessel function of order n. In the last line
we have used the fact that the hopping matrix element
scales like t ¼ ~tt=

ffiffiffi
d
p

for d!1; hence, st � 1. Thus,
we can ignore J2 and J4 as compared to J0 by using
JnðxÞ � xn=ð2nn!Þ. Repeating the above algebra without
sin4 k1 shows that, J0ð2stÞ½ �d is indeed the Fourier transform
of Dð"Þ. Therefore,
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which allows us to write
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We see that in d!1, the k summation simply becomes a
DOS integration. In the following " stands for "k, and the
explicit " subscript emphasizes the k label. This derivation
indicates that the other four current correlations like
h|1|1|2|2i in the d!1 limit differ from h|1|1|1|1i by a

ν
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Fig. 1. Feynman diagram corresponding to the third harmonic generation.

This diagram represents the time-ordered four-current correlation. To

obtain the fully retarded four-current correlation, we ensure the correct

�þ i� analytic behavior.
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numerical factor. Therefore THG in the limit of d!1 is
independent of various directions in space. Hence, DMFT
can not distinguish optical spectroscopies with polarized
light from those with unpolarized light.

In elucidating the matrix element effects in the DMFT
method, after writing the Lehman representation for
the Greens’ functions in terms of Aðk;EÞ ! Að";EÞ and
by using standard contour integration techniques for the
1=�

P
!n

summation, we obtain
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where f is the Fermi function. This expression closely
resembles familiar expressions in nonlinear optics literature
(see, e.g., Sec. 3.2 of ref. 2). Therefore, in this formulation,
the matrix element effects enter via the spectral function
Að";EÞ, which is determined only by the self-energy. In
principle, after replacing i� with �þ i0þ in this expression,
we can use the spectral weights obtained from the DMFT
solver to calculate the nonlinear response. However, the
numerical calculation of the above 5D integrals is not
computationally feasible.

Another alternative method would be to calculate �THG at
Matsubara frequencies according to (11), followed by the
analytic continuation i�! �þ i0þ. However, in this proc-
ess, we face spurious features that are characteristic of the
analytic continuation of numbers, which makes it difficult to
assess the nonlinear dynamical structures.

Since we are interested in high energy features in the scale
of the Mott gap, which is much larger than the thermal
energies at room temperature, in order to avoid the above-
mentioned difficulties, we work at zero temperature. At
T ¼ 0, (11) will be replaced by

�THGð�Þ ¼
~tt4
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1
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1
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where � j ¼ !þ j���Rð!þ j�Þ þ ij�Ið!þ j�Þj for j ¼ 0,
1, 2, 3.

In the above formula, (i) the integration over " corre-
sponds to the summation over the intermediate states in
conventional expressions,2) which are usually used for
systems with discrete energy levels, and (ii) the matrix
element effects are encoded in �ð!Þ—real and imaginary
parts of which have been denoted by �R and �I,
respectively. It is very crucial to note that we have used
the absolute value of the imaginary part of the self-energy.
This is indeed a necessary step to shift from time-ordered
four-current, to fully retarded one.3)

Decomposing the integrand in (14) to partial fractions

in terms of ", the four-current correlation can be written as
f0 þ f1 þ f2 þ f3, where

f jð�Þ ¼
~tt4
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Equation (15) reveals the resonance structure transparently:
It arises from !þ j���Rð!þ j�Þ ¼ ". When the frequen-
cy � of the photons is such that the j-photon frequency
matches the energy difference "� !þ�Rð!þ j�Þ, we
will have a j-photon resonance. Here, f0 corresponds to a
background contribution.

Note that we do not have any control over the ‘‘broad-
ening’’ parameter � within this formulation, instead the
broadening � ¼ j�Ið!Þj is determined by the solution of the
impurity problem in a self-consistent fashion.

Now, let us present our results. For a semicircular Bethe
lattice DOS of width 2~tt ¼ 1, the critical value is given by
Uc � 3:3, above which the system is in the Mott insulating
state. Figure 2 shows the result for U ¼ 4:5. The lower panel
shows the self-consistent DOS with a Mott–Hubbard gap

 2:5. The peak-to-peak separation between the upper and
lower Hubbard bands is approximately U ¼ 4:5. The upper
panel shows the real part (dashed), imaginary part (dotted),
and absolute value (solid line) of the four-current correlation
h||||iTHG.

The onset of absorption starts at � � 0:85, which is 1/3
the gap magnitude. This can be clearly seen in the imaginary
part of the THG four-current correlation in Fig. 2. This onset
clearly corresponds to the three-photon absorption. The
three-photon resonance peaks are observed at around � �
1:5 (denoted by A), which is 1/3 the peak-to-peak separation
of the Hubbard bands. Further, the weaker feature (denoted
by B), which is a shoulder similar to the finite-dimensional
results,5) corresponds to 1/2 peak-to-peak separation (
4:5)
of the Hubbard bands. The one-photon process is the
weakest feature around � 
 4:5, which can hardly be
distinguished in the THG spectrum. However, although
the DMFT is designed to work better in larger dimensions,
the spectrum in Fig. 2 qualitatively resembles the exper-
imental result of Sr2CuO3, which is a one-dimensional
Mott insulator.5)
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Fig. 2. THG and DOS for U ¼ 4:5. We use the Bethe lattice for solving

DMFT equations. In the upper panel, the dashed line is the imaginary

part of h||||i, narrow solid line represents its real part, and the bold

solid line represents its absolute value. The lower panel shows the DOS.

The onset of (3-photon) absorption at � � 0:85 corresponds to the gap

value, Eg � 2:5, while the peak-to-peak energy difference is on the scale

of U ¼ 4:5.
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We claimed that in peak A of Fig. 2, the dominant
contribution comes from the three-photon processes. To
demonstrate this, we plot the imaginary part of f3ð�Þ with
dashed line in Fig. 3. The solid line shows the total four-
current correlation. As can be seen, the three-photon
resonance dominantly contributes to peak A, although it is
slightly shifted to lower energies. Further, it is clearly seen
that f3ð�Þ does not contribute significantly to the two-photon
resonance at B. f3ð�Þ also blows up at small frequencies,
which according to (15) will be finally compensated by other
partial spectra f0, f1, f2, to give the total THG spectrum.

In Fig. 4, we plot Im f3=Eg for Mott insulators with
various values of U as a function of �=Eg. We also apply an
overall scaling to the curves. Such a scaling behavior,
though approximate, points to a universal features in the
nonlinear optical spectra of the Mott insulators, which are
independent of the gap magnitude. It seems that the mean
field scaling behavior3) survives the quantum fluctuations
implemented by DMFT. It would be interesting to further
explore this observation by using alternative methods of
dealing with correlated insulators.

In summary, on the technical side, we have formulated the
nonlinear optical response theory within the DMFT theory.
In eq. (14), we present a feasible solution for avoiding
numerical difficulties. From the physics viewpoint, assuming
that DMFT is a good approximation for d > 1, we observe
that the nonlinear optical spectra of higher dimensional Mott
insulators share common features with those observed in the
d ¼ 1 dimensional Mott insulator Sr2CuO3.5) Further, within
the DMFT, we observe an approximate scaling behavior in
the THG spectra of Mott insulators.
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