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We study the quenching of the Haldane gap in quasi-one-dimensional systems of weakly coupled
spin-1 antiferromagnetic Heisenberg chains. The critical interchain coupling Jc required to stabilize
long range magnetic order can be accurately determined from large scale quantum Monte Carlo
calculations. Several different geometries of coupled chains are studied, illustrating the dependence
of Jc on the coordination of chains. For bipartite geometries, ferromagnetically coupled chains yield
similar magnitudes for Jc.
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1. Introduction

The well-known Haldane conjecture states that antiferromagnetic Heisenberg spin chains with
integer spin possess an excitation gap [1]. This implies that a system of weakly coupled chains at
zero temperature will remain in the gapped Haldane phase until the interchain coupling J reaches a
critical value Jc sufficient to quench the Haldane gap and establish long range magnetic order. This
theoretical picture has been verified through the discovery of a number of Haldane gap materials,
such as Ni(C2H8N2)2NO2(ClO4), abbreviated as NENP [2].

The ground state of the spin-1 Heisenberg antiferromagnetic chain has been well established.
Following Haldane’s initial conjecture that integer spin chains have gapped excitations [1], numeric
work was undertaken to confirm this prediction for the spin-1 case. Early on, Botet and Jullien showed
evidence for a gap through a finite size scaling analysis of exact results for finite chains [3]. The
Haldane gap was later calculated to high precision by White and Huse using the density matrix
renormalization group [4].

Following the discovery of the Haldane gap material NENP, Sakai and Takahashi considered
the effect of small interchain interactions on a system of antiferromagnetic Heisenberg chains [5].
Through a mean field treatment of exact results for finite chains, a critical coupling nJc ≈ 0.51 was
found (n being the coordination of chains). Since mean field theory neglects fluctuations, this value
represents a lower bound. Later, Koga and Kawakami [6] employed a series expansion technique to
determine Jc for hypercubic geometries in two and three dimensions. The resulting values for nJc

were roughly twice as large as those of Sakai and Takahashi. Meanwhile, Kim and Birgeneau [7] and
Matsumoto et al. [8] both performed quantum Monte Carlo (QMC) calculations for two dimensional
geometries in the quasi-one-dimensional limit and arrived at nJc ≈ 0.08. This lies above the mean
field result, yet below the series expansion value. Thus, it appears that we can use the mean field and
series expansion results as lower and upper bounds, respectively. However, to date the more realistic
three dimensional geometries have not been considered with recent powerful QMC methods.
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In this work, we use a finite size scaling QMC method to accurately determine the critical in-
terchain coupling Jc of the Haldane to Néel quantum phase transition in three-dimensional systems
of spin-1 Heisenberg antiferromagnetic chains in the quasi-one-dimensional limit. By performing
this analysis for different chain coordinations n, we are able to show that the quantity nJc remains
roughly constant, as predicted by mean field theory [5]. We also compare the results for ferro- and
antiferro-magnetically coupled chains, which turn out to be nearly identical for bipartite lattices.

2. Model and Methods

We consider a quasi-one-dimensional system of weakly coupled spin-1 Heisenberg antiferromag-
netic chains described by the Hamiltonian

H = J‖
∑
〈ij〉‖

~Si · ~Sj + J⊥
∑
〈ij〉⊥

~Si · ~Sj . (1)

Here J‖ is the spin exchange coupling between nearest neighbor spin pairs within a single chain,
while J⊥ is the spin exchange coupling between nearest neighbor spin pairs on different chains.
Without any loss of generality, we set J‖ = 1 and use a single parameter J = J⊥ to tune the strength
of interchain spin coupling. In this work we consider several geometric arrangements of chains with
coordination number 3 ≤ n ≤ 6, as shown in Fig. 1. Due to the large spatial anisotropy of the
spin exchange coupling, we utilize non-cubic simulation cells of dimension L × L × 4L in order to
more rapidly approach the scaling limit [9]. We find an inverse temperature β = 2L and system size
N = 4L3 = 6912 are sufficient to reach the ground state and thermodynamic limits, respectively.

Fig. 1. (Color online) (a) Illustration of the geometric arrangement of chains used in our calculations. Chains
are represented by circles that form (a) honeycomb (n = 3), (b) square (n = 4), and (c) triangular (n = 6)
lattices. In each case, our non-primitive unit cell is shown as a shaded region.

To investigate the above model, we use the stochastic series expansion QMC method based on a
Taylor series expansion of the density matrix in the Sz-projected spin basis. Solving the directed loop
equations of Syljuåsen and Sandvik [10], we can minimize bounces in the loop algorithm, leading to
efficient global updates. For bipartite geometries (i.e. honeycomb and square), a sublattice rotation
can transform the transverse components of the spin exchange interactions from antiferromagnetic to
ferromagnetic. This guarantees the Marshall-Peierls sign rule is obeyed, as required to avoid the sign
problem in quantum Monte Carlo.

The spin stiffness in d dimensions can be defined in terms of winding numbers [11] by the relation
ρs = 3

2

P

α〈w2
α〉

βdLd−2 [12]. This is a useful observable to distinguish between gapped and gapless states.
Since the Haldane state is gapped and the Néel state is gapless, we can use a finite size scaling method
to determine the critical point of the quantum phase transition between these two states. At a critical
point in d dimensions, the spin stiffness scales as ρs = L2−(d+z), where z is the dynamic critical
exponent [13]. In the present case, d = 3 and z = 1, so we expect a quantum phase transition
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belonging to the four-dimensional Heisenberg universality class. Thus, the crossing point of ρsL
2

provides an estimate of the critical point for the system under consideration.

3. Results

The effect of geometry on antiferromagnetically coupled chains on bipartite lattices can be de-
termined by QMC calculations. In Fig. 3 we present the results of a finite size scaling analysis of
the spin stiffness ρs across the Haldane to Néel phase boundary for honeycomb and square geome-
tries. The crossing point of ρsL

2 yields values of Jc = 0.0229(6) and Jc = 0.0162(4), respectively,
for these two bipartite geometries. Since the effective dimensionality d + z equals the upper critical
dimension, we expect mean field critical exponents for the transition. Using the mean field critical
exponent ν = 1/2 produces a curve collapse for systems in the critical region, but also indicates the
presence of corrections to scaling, which is not unexpected given the spatial anisotropy of our model
Hamiltonian.
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Fig. 2. (Color online) The scaled spin stiffness ρsL
2 for antiferromagnetically coupled chains arranged in

(a) square lattice (n = 4) and (b) honeycomb lattice (n = 3) geometries. In the main panel, the crossing
point of ρsL

2 gives an estimate for the critical coupling Jc. The inset shows finite size scaling curve collapse
assuming a mean field value for the critical exponent ν.

The mean field treatment of Sakai and Takahashi [5] yields a critical coupling that depends only
on the coordination number n of the spin chains. Indeed, we find very little variation in nJc, in
qualitative agreement with mean field theory. Comparing our values of nJc to past results in Table I,
we find a general agreement. Specifically, our results for nJc are larger than the mean field treatment
of Sakai and Takahashi [5], yet smaller than the series expansion of Koga and Kawakami [6] or the
QMC results of Kim and Birgeneau [7] and Matsumoto et al. [8]. This is entirely consistent with the
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Source Method d n Jc n|Jc|

Sakai and Takahashi [5] Mean Field 0.051(1)
Koga and Kawakami [6] Series Expansion 2 2 0.056(1) 0.112(2)

3 4 0.026(1) 0.104(4)
Kim and Birgeneau [7] QMC 2 2 0.040(5) 0.080(10)

Matsumoto et al. [8] QMC 2 2 0.043648(8) 0.087296(16)
Present work QMC 3 3 0.0229(6) 0.0687(18)

3 4 0.0162(4) 0.0648(16)
3 3 -0.0230(5) 0.0690(15)
3 4 -0.0163(4) 0.0652(16)
3 6 -0.0104(2) 0.0624(12)

Table I. Comparison of critical couplings from divers calculations.

expected role of fluctuations in such systems. Mean field theory neglects fluctuations, which leads to
smaller values of nJc. Additionally, it is known that fluctuations are stronger in lower dimensions,
and thus nJc will be larger in two dimensional geometries.

The effect of ferromagnetic interchain coupling can be investigated for any geometric arrange-
ment of chains. In Fig. 3 we show results for honeycomb, square, and triangular geometries. As
before, the quantity nJc varies little between the geometries considered. However, a weak inverse
relationship between nJc and n is apparent upon closer inspection (see Table I). Further, we find that
the magnitude of the critical coupling is nearly independent of the sign of J on the bipartite lattices.
A similar conclusion was also reached for a linear array of coupled chains [14].
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Fig. 3. (Color online) The scaled spin stiffness ρsL
2 for ferromagnetically coupled chains in (a) honeycomb

lattice (n = 3), (b) square lattice (n = 4) and (c) triangular lattice (n = 6) geometries. The crossing point of
ρsL

2 gives an estimate for the critical coupling Jc.
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4. Conclusion

We have performed a QMC study of the quenching of the Haldane gap in quasi-one-dimensional
spin-1 Heisenberg antiferromagnets. Using a finite size scaling analysis of the spin stiffness param-
eter, we determine the critical coupling Jc at which the Haldane gap is quenched and the system
transforms into the gapless Nèel state with long range magnetic order. For both ferro- and antiferro-
magnetically coupled chains the effect of lattice geometry is shown to be in close qualitative agree-
ment with predictions from mean field theory, with an added weak dependence of Jc on n. Finally,
the sign of J has little effect for bipartite systems.
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