J. Phys. Soc. Jpn. 90, 054705 (2021) [5 Pages]
FULL PAPERS

Material Optimization of Potential High-Tc Superconducting Single-Layer Cuprates

+ Affiliations
1Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan2Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

We investigated the material parameters of several single-layer cuprates, including those with fluorinated buffer layers, with the aim of identifying possible high-temperature superconductors. To evaluate the material parameters, we use the Wannierization techniques and the constrained random phase approximation. The obtained single-band Hubbard models are studied using the fluctuation–exchange approximation, and the superconductivity is studied by solving the linearized Eliashberg equation. Comparison among several cuprates reveals unknown high-Tc superconductors. In, Ga, Al, and Cd compounds in particular show the potential to exhibit higher-Tc superconductivity than Hg1201.

©2021 The Physical Society of Japan

References

  • 1 S. Putilin, E. Antipov, O. Chmaissem, and M. Marezio, Nature 362, 226 (1993). 10.1038/362226a0 CrossrefGoogle Scholar
  • 2 H. Sakakibara, H. Usui, K. Kuroki, R. Arita, and H. Aoki, Phys. Rev. Lett. 105, 057003 (2010). 10.1103/PhysRevLett.105.057003 CrossrefGoogle Scholar
  • 3 H. Sakakibara, H. Usui, K. Kuroki, R. Arita, and H. Aoki, Phys. Rev. B 85, 064501 (2012). 10.1103/PhysRevB.85.064501 CrossrefGoogle Scholar
  • 4 H. Sakakibara, K. Suzuki, H. Usui, S. Miyao, I. Maruyama, K. Kusakabe, R. Arita, H. Aoki, and K. Kuroki, Phys. Rev. B 89, 224505 (2014). 10.1103/PhysRevB.89.224505 CrossrefGoogle Scholar
  • 5 S. Teranishi, K. Nishiguchi, and K. Kusakabe, J. Phys. Soc. Jpn. 87, 114701 (2018). 10.7566/JPSJ.87.114701 LinkGoogle Scholar
  • 6 I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001). 10.1103/PhysRevB.65.035109 CrossrefGoogle Scholar
  • 7 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997). 10.1103/PhysRevB.56.12847 CrossrefGoogle Scholar
  • 8 A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014). 10.1016/j.cpc.2014.05.003 CrossrefGoogle Scholar
  • 9 F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004). 10.1103/PhysRevB.70.195104 CrossrefGoogle Scholar
  • 10 F. Nilsson, K. Karlsson, and F. Aryasetiawan, Phys. Rev. B 99, 075135 (2019). 10.1103/PhysRevB.99.075135 CrossrefGoogle Scholar
  • 11 N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989). 10.1103/PhysRevLett.62.961 CrossrefGoogle Scholar
  • 12 N. Bickers and D. Scalapino, Ann. Phys. 193, 206 (1989). 10.1016/0003-4916(89)90359-X CrossrefGoogle Scholar
  • 13 A. M. Abakumov, V. L. Aksenov, V. A. Alyoshin, E. V. Antipov, A. M. Balagurov, D. A. Mikhailova, S. N. Putilin, and M. G. Rozova, Phys. Rev. Lett. 80, 385 (1998). 10.1103/PhysRevLett.80.385 CrossrefGoogle Scholar
  • 14 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009). 10.1088/0953-8984/21/39/395502 CrossrefGoogle Scholar
  • 15 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio, Jr., A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, and S. Baroni, J. Phys.: Condens. Matter 29, 465901 (2017). 10.1088/1361-648X/aa8f79 CrossrefGoogle Scholar
  • 16 K. Nakamura, Y. Nohara, Y. Yoshimoto, and Y. Nomura, Phys. Rev. B 93, 085124 (2016). 10.1103/PhysRevB.93.085124 CrossrefGoogle Scholar
  • 17 K. Nakamura, Y. Yoshimoto, T. Kosugi, R. Arita, and M. Imada, J. Phys. Soc. Jpn. 78, 083710 (2009). 10.1143/JPSJ.78.083710 LinkGoogle Scholar
  • 18 K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc. Jpn. 77, 093711 (2008). 10.1143/JPSJ.77.093711 LinkGoogle Scholar
  • 19 Y. Nohara, S. Yamamoto, and T. Fujiwara, Phys. Rev. B 79, 195110 (2009). 10.1103/PhysRevB.79.195110 CrossrefGoogle Scholar
  • 20 T. Fujiwara, S. Yamamoto, and Y. Ishii, J. Phys. Soc. Jpn. 72, 777 (2003). 10.1143/JPSJ.72.777 LinkGoogle Scholar
  • 21 (Supplemental Material) Further details of the Fermi surfaces is provided online. Google Scholar
  • 22 S. Sahrakorpi, H. Lin, R. S. Markiewicz, and A. Bansil, Physica C 460–462, 428 (2007). 10.1016/j.physc.2007.03.109 CrossrefGoogle Scholar
  • 23 D. Peets, J. Mottershead, B. Wu, I. Elfimov, R. Liang, W. Hardy, D. Bonn, M. Raudsepp, N. Ingle, and A. Damascelli, New J. Phys. 9, 28 (2007). 10.1088/1367-2630/9/2/028 CrossrefGoogle Scholar
  • 24 E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Phys. Rev. Lett. 87, 047003 (2001). 10.1103/PhysRevLett.87.047003 CrossrefGoogle Scholar
  • 25 K. Tanaka, T. Yoshida, A. Fujimori, D. H. Lu, Z.-X. Shen, X.-J. Zhou, H. Eisaki, Z. Hussain, S. Uchida, Y. Aiura, K. Ono, T. Sugaya, T. Mizuno, and I. Terasaki, Phys. Rev. B 70, 092503 (2004). 10.1103/PhysRevB.70.092503 CrossrefGoogle Scholar
  • 26 H. Sakakibara, K. Suzuki, H. Usui, K. Kuroki, R. Arita, D. J. Scalapino, and H. Aoki, Phys. Rev. B 86, 134520 (2012). 10.1103/PhysRevB.86.134520 CrossrefGoogle Scholar
  • 27 J. Gazquez, R. Guzman, R. Mishra, E. Bartolomé, J. Salafranca, C. Magén, M. Varela, M. Coll, A. Palau, S. M. Valvidares, P. Gargiani, E. Pellegrin, J. Herrero-Martin, S. J. Pennycook, S. T. Pantelides, T. Puig, and X. Obradors, Adv. Sci. 3, 1500295 (2016). 10.1002/advs.201500295 CrossrefGoogle Scholar
  •   (28) For the energy calculation of molecules, we carried out several calculations (LSDA, B3LYP and PBE0) and the obtained values of the formation energies are all negative. The value of formation energy listed is the one that is the closest to 0. We take the value of 20 Å for the vacuum gap. Google Scholar
  • 29 Y. Watanabe, N. Komiyama, Y. Shimabukuro, M. Satoh, and S. Kambe, Trans. Mater. Res. Soc. Jpn. 42, 159 (2017). 10.14723/tmrsj.42.159 CrossrefGoogle Scholar
  • 30 N. Balchev, V. Lovchinov, E. Gattef, A. Staneva, K. Konstantinov, and J. Pirov, J. Supercond. 8, 329 (1995). 10.1007/BF00728166 CrossrefGoogle Scholar
  • 31 N. Balchev, V. Lovchinov, E. Gattef, and A. Staneva, J. Supercond. 8, 333 (1995). 10.1007/BF00728167 CrossrefGoogle Scholar
  • 32 R. Mariychuk, P. Popovich, V. Bunda, S. Meszaros, and E. Semrad, Bulg. J. Phys. 27, 33 (2000). Google Scholar
  • 33 M. Isobe, T. Kawashima, K. Kosuda, Y. Matsui, and E. Takayama-Muromachi, Physica C 234, 120 (1994). 10.1016/0921-4534(94)90063-9 CrossrefGoogle Scholar
  • 34 E. Takayama-Muromachi and M. Isobe, Jpn. J. Appl. Phys. 33, L1399 (1994). 10.1143/JJAP.33.L1399 CrossrefGoogle Scholar
  • 35 K. Nishiguchi, K. Kuroki, R. Arita, T. Oka, and H. Aoki, Phys. Rev. B 88, 014509 (2013). 10.1103/PhysRevB.88.014509 CrossrefGoogle Scholar
  • 36 K. Nishiguchi, S. Teranishi, and K. Kusakabe, J. Phys. Soc. Jpn. 86, 084707 (2017). 10.7566/JPSJ.86.084707 LinkGoogle Scholar
  • 37 K. Nishiguchi, S. Teranishi, K. Kusakabe, and H. Aoki, Phys. Rev. B 98, 174508 (2018). 10.1103/PhysRevB.98.174508 CrossrefGoogle Scholar
  • 38 H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, P. K. Mang, K. M. Shen, Z.-X. Shen, and M. Greven, Phys. Rev. B 69, 064512 (2004). 10.1103/PhysRevB.69.064512 CrossrefGoogle Scholar