J. Phys. Soc. Jpn. 80, 013703 (2011) [4 Pages]
LETTERS

Multi-Orbital Molecular Compound (TTM-TTP)I3: Effective Model and Fragment Decomposition

+ Affiliations
1Department of Physics, Nagoya University, Nagoya 464-8602, Japan2Université de Lyon, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, F-69364 Lyon, France3Laboratoire de Chimie Quantique, UMR 7177 CNRS/Université de Strasbourg, F-67000 Strasbourg, France4Nanosystem Research Institute (NRI) “RICS”, AIST, Tsukuba, Ibaraki 305-8568, Japan5Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan6JST, CREST, Wako, Saitama 351-0198, Japan

The electronic structure of the molecular compound (TTM-TTP)I 3 , which exhibits a peculiar intra-molecular charge ordering, has been studied using multi-configuration ab initio calculations. First we derive an effective Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine its full parameters: the transfer integrals, the Coulomb and exchange interactions. The tight-binding band structure obtained from these transfer integrals is consistent with the result of the direct band calculation based on density functional theory. Then, by decomposing the frontier MOs into two parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be described by a two-leg ladder model, while the inter-fragment Coulomb energies are scaled to the inverse of their distances. This result indicates that the fragment picture that we proposed earlier [M.-L. Bonnet et al. : J. Chem. Phys. 132 (2010) 214705] successfully describes the low-energy properties of this compound.

©2011 The Physical Society of Japan

References

  • 1 T.Mori: Chem. Rev. 104 (2004) 4947. CrossrefGoogle Scholar
  • 2 H.Seo, C.Hotta, and H.Fukuyama: Chem. Rev. 104 (2004) 5005. CrossrefGoogle Scholar
  • 3 H.Seo, J.Merino, H.Yoshioka, and M.Ogata:J. Phys. Soc. Jpn. 75 (2006) 051009. LinkGoogle Scholar
  • 4 H.Tanaka, Y.Okano, H.Kobayashi, W.Suzuki, and A.Kobayashi:Science 291 (2001) 285. CrossrefGoogle Scholar
  • 5 C.Rovira, J. J.Novoa, J.-L.Mozos, P.Ordejón, and E.Canadell:Phys. Rev. B 65 (2002) 081104. CrossrefGoogle Scholar
  • 6 S.Ishibashi, H.Tanaka, M.Kohyama, M.Tokumoto, A.Kobayashi, H.Kobayashi, and K.Terakura:J. Phys. Soc. Jpn. 74 (2005) 843; S.Ishibashi, K.Terakura, and A.Kobayashi:J. Phys. Soc. Jpn. 77 (2008) 024702; H.Seo, S.Ishibashi, Y.Okano, H.Kobayashi, A.Kobayashi, H.Fukuyama, and K.Terakura:J. Phys. Soc. Jpn. 77 (2008) 023714. LinkGoogle Scholar
  • 7 T.Mori, H.Inokuchi, Y.Misaki, T.Yamabe, H.Mori, and S.Tanaka:Bull. Chem. Soc. Jpn. 67 (1994) 661. CrossrefGoogle Scholar
  • 8 T.Mori, T.Kawamoto, J.Yamaura, T.Enoki, Y.Misaki, T.Yamabe, H.Mori, and S.Tanaka:Phys. Rev. Lett. 79 (1997) 1702. CrossrefGoogle Scholar
  • 9 S.Yasuzuka, K.Murata, T.Fujimoto, M.Shimotori, T.Kawamoto, T.Mori, H.Masato, and Y.Uwatoko:J. Phys. Soc. Jpn. 75 (2006) 053701. LinkGoogle Scholar
  • 10 M.Tsuchiizu, Y.Suzumura, and C.Bourbonnais:Phys. Rev. Lett. 99 (2007) 126404. CrossrefGoogle Scholar
  • 11 M.Maesato, Y.Sasou, S.Kagoshima, T.Mori, T.Kawamoto, Y.Misaki, and T.Yamabe:Synth. Met. 103 (1999) 2109. CrossrefGoogle Scholar
  • 12 N.Fujimura, A.Namba, T.Kambe, Y.Nogami, K.Oshima, T.Mori, T.Kawamoto, Y.Misaki, and T.Yamabe:Synth. Met. 103 (1999) 2111. CrossrefGoogle Scholar
  • 13 M.Onuki, K.Hiraki, T.Takahashi, D.Jinno, T.Kawamoto, T.Mori, T.Takano, and Y.Misaki:Synth. Met. 120 (2001) 921; M.Onuki, K.Hiraki, T.Takahashi, D.Jinno, T.Kawamoto, T.Mori, K.Tanaka, and Y.Misaki:J. Phys. Chem. Solids 62 (2001) 405. CrossrefGoogle Scholar
  • 14 K.Yakushi, R.Swietlik, K.Yamamoto, T.Kawamoto, T.Mori, Y.Misaki, and K.Tanaka: Synth. Met. 135 (2003) 583; R.Świetlik, K.Yakushi, K.Yamamoto, T.Kawamoto, and T.Mori: J. Mol. Struct. 704 (2004) 89; R.Świetlik, K.Yakushi, K.Yamamoto, T.Kawamoto, and T.Mori:Synth. Met. 150 (2005) 83. Google Scholar
  • 15 Y.Nogami, T.Kambe, N.Fujimura, K.Oshima, T.Mori, and T.Kawamoto:Synth. Met. 135–136 (2003) 637. CrossrefGoogle Scholar
  • 16 M.-L.Bonnet, V.Robert, M.Tsuchiizu, Y.Omori, and Y.Suzumura:J. Chem. Phys. 132 (2010) 214705. CrossrefGoogle Scholar
  • 17 G.Karlström, R.Lindh, P.-Å.Malmqvist, B. O.Roos, U.Ryde, V.Veryazov, P.-O.Widmark, M.Cossi, B.Schimmelpfennig, P.Neogrady, and L.Seijo: Comput. Mater. Sci. 28 (2003) 222. CrossrefGoogle Scholar
  • 18 L.Cano-Cortés, A.Dolfen, J.Merino, J.Behler, B.Delley, K.Reuter, and E.Koch: Eur. Phys. J. B 56 (2007) 173. CrossrefGoogle Scholar
  • 19 K.Nakamura, Y.Yoshimoto, T.Kosugi, R.Arita, and M.Imada:J. Phys. Soc. Jpn. 78 (2009) 083710. LinkGoogle Scholar
  • 20 E.Scriven and B. J.Powell:J. Chem. Phys. 130 (2009) 104508; E.Scriven and B. J.Powell:Phys. Rev. B 80 (2009) 205107. CrossrefGoogle Scholar
  • 21 T.Mori, A.Kobayashi, Y.Sasaki, H.Kobayashi, G.Saito, and H.Inokuchi:Bull. Chem. Soc. Jpn. 57 (1984) 627. CrossrefGoogle Scholar
  • 22 S.Ishibashi, T.Tamura, S.Tanaka, M.Kohyama, and K.Terakura:http://www.qmas.jp. Google Scholar
  • 23 J. P.Perdew, K.Burke, and M.Ernzerhof:Phys. Rev. Lett. 77 (1996) 3865. CrossrefGoogle Scholar
  • 24 T.Mori:Bull. Chem. Soc. Jpn. 73 (2000) 2243. CrossrefGoogle Scholar