J. Phys. Soc. Jpn. 80, 054704 (2011) [7 Pages]
FULL PAPERS

f-Electron-Nuclear Hyperfine-Coupled Multiplets in the Unconventional Charge Order Phase of Filled Skutterudite PrRu4P12

+ Affiliations
1Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan2Department of Physics, Toyama University, Toyama 930-8555, Japan3Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan4Department of Materials Science and Technology, Niigata University, Niigata 950-2181, Japan5Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan6Department of Physics, Kobe University, Kobe 657-8501, Japan

The filled skutterudite PrRu 4 P 12 is known to undergo an unconventional charge order phase transition at 63 K, below which two sublattices with distinct f -electron crystalline-electric-field ground states are formed. In this paper, we study experimentally and theoretically the properties of the charge order phase at very low temperature, particularly focusing on the nature of the degenerate triplet ground state on one of the sublattices. First, we present experimental results of specific heat and magnetization measured with high quality single crystals. In spite of the absence of any symmetry breaking, the specific heat shows a peak structure at T p =0.30 K in zero field; it shifts to higher temperatures as the magnetic field is applied. In addition, the magnetization curve has a remarkable rounding below 1 T. Then, we study the origin of these experimental findings by considering the hyperfine interaction between 4 f electron and nuclear spin. We demonstrate that the puzzling behaviors at low temperatures can be well accounted for by the formation of 4f-electron-nuclear hyperfine-coupled multiplets , the first thermodynamical observation of its kind.

©2011 The Author(s)
This article is published by the Physical Society of Japan under the terms of the Creative Commons Attribution 4.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the article, journal citation, and DOI.

References

  • 1 Y.Aoki, H.Sugawara, H.Harima, and H.Sato:J. Phys. Soc. Jpn. 74 (2005) 209. LinkGoogle Scholar
  • 2 See Proc. Int. Conf. New Quantum Phenomena in Skutterudite and Related Systems, J. Phys. Soc. Jpn. 77 (2008) Suppl. A. Google Scholar
  • 3 H.Sato, H.Sugawara, Y.Aoki, and H.Harima: inHandbook of Magnetic Materials, ed. K. H. J.Buschow (North-Holland, Amsterdam, 2009) Vol. 18, Chap. 1, p. 1. CrossrefGoogle Scholar
  • 4 E. D.Bauer, N. A.Frederick, P.-C.Ho, V. S.Zapf, and M. B.Maple:Phys. Rev. B 65 (2002) 100506. CrossrefGoogle Scholar
  • 5 For a review, see Y.Aoki, T.Tayama, T.Sakakibara, K.Kuwahara, K.Iwasa, M.Kohgi, W.Higemoto, D. E.MacLaughlin, H.Sugawara, and H.Sato:J. Phys. Soc. Jpn. 76 (2007) 051006. LinkGoogle Scholar
  • 6 Y.Aoki, T.Namiki, T. D.Matsuda, K.Abe, H.Sugawara, and H.Sato:Phys. Rev. B 65 (2002) 064446. CrossrefGoogle Scholar
  • 7 J.Kikuchi, M.Takigawa, H.Sugawara, and H.Sato:J. Phys. Soc. Jpn. 76 (2007) 043705. LinkGoogle Scholar
  • 8 C.Sekine, T.Uchiumi, I.Shirotani, and T.Yagi:Phys. Rev. Lett. 79 (1997) 3218. CrossrefGoogle Scholar
  • 9 C. H.Lee, H.Matsuhata, H.Yamaguchi, C.Sekine, K.Kihou, T.Suzuki, T.Noro, and I.Shirotani:Phys. Rev. B 70 (2004) 153105. CrossrefGoogle Scholar
  • 10 H.Harima and K.Takegahara:J. Phys.: Condens. Matter 15 (2003) S2081. CrossrefGoogle Scholar
  • 11 H.Harima:Proc. Int. Conf. New Quantum Phenomena in Skutterudite and Related Systems (Skutterudite 2007), J. Phys. Soc. Jpn. 77 (2008) Suppl. A, p. 114. Google Scholar
  • 12 S. R.Saha, H.Sugawara, Y.Aoki, H.Sato, Y.Inada, H.Shishido, R.Settai, Y.Ōnuki, and H.Harima:Phys. Rev. B 71 (2005) 132502. CrossrefGoogle Scholar
  • 13 K.Iwasa, L.Hao, K.Kuwahara, M.Kohgi, S. R.Saha, H.Sugawara, Y.Aoki, H.Sato, T.Tayama, and T.Sakakibara:Phys. Rev. B 72 (2005) 024414. CrossrefGoogle Scholar
  • 14 K.Iwasa, L.Hao, T.Hasegawa, T.Takagi, K.Horiuchi, Y.Mori, Y.Murakami, K.Kuwahara, M.Kohgi, H.Sugawara, S. R.Saha, Y.Aoki, and H.Sato:J. Phys. Soc. Jpn. 74 (2005) 1930. LinkGoogle Scholar
  • 15 N.Ogita, R.Kojima, T.Hasegawa, M.Udagawa, H.Sugawara, and H.Sato:J. Phys.: Conf. Ser. 150 (2009) 042147. CrossrefGoogle Scholar
  • 16 T.Takimoto:J. Phys. Soc. Jpn. 75 (2006) 034714. LinkGoogle Scholar
  • 17 S. R.Saha, H.Sugawara, T.Namiki, Y.Aoki, and H.Sato:Phys. Rev. B 80 (2009) 014433. CrossrefGoogle Scholar
  • 18 R.Shiina:J. Phys. Soc. Jpn. 78 (2009) 104722. LinkGoogle Scholar
  • 19 R.Shiina and H.Shiba:J. Phys. Soc. Jpn. 79 (2010) 044704. LinkGoogle Scholar
  • 20 S. R.Saha, W.Higemoto, A.Koda, K.Ohishi, R.Kadono, Y.Aoki, H.Sugawara, and H.Sato:Physica B 359–361 (2005) 850. CrossrefGoogle Scholar
  • 21 J.Kondo:J. Phys. Soc. Jpn. 16 (1961) 1690. LinkGoogle Scholar
  • 22 B.Bleaney:J. Appl. Phys. 34 (1963) 1024. CrossrefGoogle Scholar
  • 23 T.Sakakibara, H.Mitamura, T.Tayama, and H.Amitsuka: Jpn. J. Appl. Phys. 33 (1994) 5067. CrossrefGoogle Scholar
  • 24 Tp-vs-H data obtained for a polycrystalline sample in the high-T region above 2 T are in good agreement with the present data [C. Sekine, T. Inaba, I. Shirotani, M. Yokoyama, H. Amitsuka, and T. Sakakibara:Physica B281–282(2000) 303]. This is understandable because the magnetic anisotropy is extremely weak in the T–H region. In the thermal expansion coefficient, a corresponding anomaly appears [K. Matsuhira, T. Takikawa, T. Sakakibara, C. Sekine, and I. Shirotani:Physica B281–282(2000) 298]. Google Scholar
  • 25 T.Murao:J. Phys. Soc. Jpn. 31 (1971) 683. LinkGoogle Scholar
  • 26 H.Ishii:J. Low Temp. Phys. 135 (2004) 579. CrossrefGoogle Scholar
  • 27 B.Bleaney:Physica 69 (1973) 317. CrossrefGoogle Scholar
  • 28 K.Takegahara, H.Harima, and A.Yanase:J. Phys. Soc. Jpn. 70 (2001) 1190. LinkGoogle Scholar
  • 29 Y.Aoki, T.Namiki, S.Ohsaki, S. R.Saha, H.Sugawara, and H.Sato:J. Phys. Soc. Jpn. 71 (2002) 2098. LinkGoogle Scholar
  • 30 T.Sakakibara, K.Yano, H.Sato, T.Tayama, J.Custers, H.Sugawara, Y.Aoki, and H.Sato:Proc. Int. Conf. New Quantum Phenomena in Skutterudite and Related Systems (Skutterudite 2007), J. Phys. Soc. Jpn. 77 (2008) Suppl. A, p. 180. Google Scholar
  • 31 The contributions to C from isotopes of 99Ru (I=5/2 with natural abundance NA=12.7%), 99Ru (I=5/2 with NA=17.0%), and 31P (I=1/2 with NA=100%) are negligibly smaller than that from Pr as follows. The nuclear magnetic moment averaged over the isotopes \(\overline{I(I+1)g_{\text{N}}^{2}}\) is 0.1905 and 3.842 for Ru and P, respectively. In high fields, these values lead to the nuclear contributions Cn=αN(µ0 H/T)2 with αN=2.83×10-7 and 1.71×10-5 J K/T2 mol-f.u. for Ru and P nuclei, respectively. The sum of these amounts only to ∼6×10-3 of that from Pr in 8 T. In zero field, observed 101Ru-NQR resonance frequency νQ=12.735 MHz at T=4 K (T. Mito: private communication) leads to Cn=AN/T2 with AN=3.4×10-6 J·K/mol-f.u. Google Scholar
  • 32 M.Loewenhaupt and M.Prager:Z. Phys. B 62 (1986) 195. CrossrefGoogle Scholar
  • 33 M. B.Maple, N. P.Butch, N. A.Frederick, P.-C.Ho, J. R.Jeffries, T. A.Sayles, T.Yanagisawa, W. M.Yuhasz, S.Chi, H. J.Kang, J. W.Lynn, P.Dai, S. K.McCall, M. W.McElfresh, M. J.Fluss, Z.Henkie, and A.Pietraszko: Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 6783. CrossrefGoogle Scholar
  • 34 S.Zhang, T.Mizushima, T.Kuwai, and Y.Isikawa:J. Phys.: Condens. Matter 21 (2009) 205601. CrossrefGoogle Scholar
  • 35 W.Jeitschko and D. J.Braun: Acta Crystallogr., Sect. B 33 (1977) 3401. CrossrefGoogle Scholar