Subscriber access provided by Massachusetts Institute of Technology
JPS Conf. Proc. 2, 010209 (2014) [5 pages]
Proceedings of the International Symposium on Science Explored by Ultra Slow Muon (USM2013)
Local Magnetic Field and Positive Muon Diffusion in Yttrium Iron Garnet
1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2Materials and Life Science Division, J-PARC Center, Tokai, Ibaraki 319-1195, Japan
3Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
Received September 10, 2013

We report positive muon spin rotation/relaxation (µ+SR) measurements on undoped yttrium iron garnet below 300 K in a ferrimagnetically ordered state. In zero field µ+SR measurements, static local magnetic fields were detected at 10 K in the range 0.7–1.2 T, which is consistent with the magnitude of the ordered magnetic moment. A gradual increase in a longitudinal muon spin relaxation rate was observed above 200 K with increasing temperature and attributed to thermally activated hopping of muons among magnetically inequivalent sites. The activation energy was estimated to be 0.170(7) eV.

©2014 The Physical Society of Japan

References

  • 1) T.Schneider, A. A.Serga, B.Leven, B.Hillebrands, R. L.Stamps, and M. P.Kostylev, Appl. Phys. Lett. 92, 022505 (2008). 10.1063/1.2834714 Google Scholar
  • 2) K.Uchida, J.Xiao, H.Adachi, J.Ohe, S.Takahashi, J.Ieda, T.Ota, Y.Kajiwara, H.Umezawa, H.Kawai, G. E. W.Bauer, S.Maekawa, and E.Saitoh, Nat. Mater. 9, 894 (2010). 10.1038/nmat2856 Google Scholar
  • 3) Y.Kajiwara, K.Harii, S.Takahashi, J.Ohe, K.Uchida, M.Mizuguchi, H.Umezawa, H.Kawai, K.Ando, K.Takanashi, S.Maekawa, and E.Saitoh, Nature 464, 262 (2010). 10.1038/nature08876 Google Scholar
  • 4) R.Hirko and K.Ju, IEEE Trans. Magn. 16, 958 (1980). 10.1109/TMAG.1980.1060787 Google Scholar
  • 5) G.Suran, H.Jouve, and P.Gérard, J. Appl. Phys. 54, 2006 (1983). 10.1063/1.332215 Google Scholar
  • 6) V. S.Speriosu and C. H.Wilts, J. Appl. Phys. 54, 3325 (1983). 10.1063/1.332446 Google Scholar
  • 7) R.Imura and Y.Sugita, J. Appl. Phys. 60, 2482 (1986). 10.1063/1.337162 Google Scholar
  • 8) P.Gerard, Nucl. Instrum. Methods Phys. Res., Sect. B 19–20, 843 (1987). 10.1016/S0168-583X(87)80169-6 Google Scholar
  • 9) A.Hirotsune, K.Masuda, T.Kikuchi, K.Furuya, K.Uematsu, and R.Imura, Jpn. J. Appl. Phys. 32, 1636 (1993). 10.1143/JJAP.32.1636 Google Scholar
  • 10) S. F. J.Cox, J. L.Gavartin, J. S.Lord, S. P.Cottrell, J. M.Gil, H. V.Alberto, J.Piroto Duarte, R. C.Vilão, N.Ayres de Campos, D. J.Keeble, E. A.Davis, M.Charlton, and D. P.van der Werf, J. Phys.: Condens. Matter 18, 1079 (2006). 10.1088/0953-8984/18/3/022 Google Scholar
  • 11) E. E.Anderson, Phys. Rev. 134, A1581 (1964). 10.1103/PhysRev.134.A1581 Google Scholar
  • 12) A.Amato, Rev. Mod. Phys. 69, 1119 (1997). 10.1103/RevModPhys.69.1119 Google Scholar
  • 13) T. U.Ito, W.Higemoto, K.Ohishi, N.Nishida, R. H.Heffner, Y.Aoki, H. S.Suzuki, T.Onimaru, H.Tanida, and S.Takagi, J. Phys.:Conf. Ser. 225, 012021 (2010). 10.1088/1742-6596/225/1/012021 Google Scholar
  • 14) G.Alexandrowicz, T.Tashma, M.Socolovsky, A.Amato, A.Grayevsky, F. N.Gygax, M.Pinkpank, A.Schenck, and N.Kaplan, Phys. Rev. Lett. 82, 1028 (1999). 10.1103/PhysRevLett.82.1028 Google Scholar
  • 15) R. S.Hayano, Y. J.Uemura, J.Imazato, N.Nishida, T.Yamazaki, and R.Kubo, Phys. Rev. B 20, 850 (1979). 10.1103/PhysRevB.20.850 Google Scholar
  • 16) N.Nishida and H.Miyatake, Hyperfine Interactions 63, 183 (1991). 10.1007/BF02396002 Google Scholar
  • 17) J. E.Sonier, J. H.Brewer, R. F.Kiefl, R. H.Heffner, K. F.Poon, S. L.Stubbs, G. D.Morris, R. I.Miller, W. N.Hardy, R.Liang, D. A.Bonn, J. S.Gardner, C. E.Stronach, and N. J.Curro, Phys. Rev. B 66, 134501 (2002). 10.1103/PhysRevB.66.134501 Google Scholar
  • 18) K. D.Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003). 10.1146/annurev.matsci.33.022802.091825 Google Scholar