J. Phys. Soc. Jpn. 86, 033702 (2017) [4 Pages]
LETTERS

Absence of Magnetic Long Range Order in Ba3ZnRu2O9: A Spin-Liquid Candidate in the S = 3/2 Dimer Lattice

+ Affiliations
1Department of Physics, Nagoya University, Nagoya 464-8602, Japan2Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan3Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

We have discovered a novel candidate for a spin liquid state in a ruthenium oxide composed of dimers of S = 3/2 spins of Ru5+, Ba3ZnRu2O9. This compound lacks a long range order down to 37 mK, which is a temperature 5000-times lower than the magnetic interaction scale of around 200 K. Partial substitution for Zn can continuously vary the magnetic ground state from an antiferromagnetic order to a spin-gapped state through the liquid state. This indicates that the spin-liquid state emerges from a delicate balance of inter- and intra-dimer interactions, and the spin state of the dimer plays a vital role. This unique feature should realize a new type of quantum magnetism.

©2017 The Physical Society of Japan

References

  • 1 P. Anderson, Mater. Res. Bull. 8, 153 (1973). 10.1016/0025-5408(73)90167-0 CrossrefGoogle Scholar
  • 2 L. Balents, Nature 464, 199 (2010). 10.1038/nature08917 CrossrefGoogle Scholar
  • 3 S.-S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 (2005). 10.1103/PhysRevLett.95.036403 CrossrefGoogle Scholar
  • 4 P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006). 10.1103/RevModPhys.78.17 CrossrefGoogle Scholar
  • 5 Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003). 10.1103/PhysRevLett.91.107001 CrossrefGoogle Scholar
  • 6 T. Itou, A. Oyamada, S. Maegawa, M. Tamura, and R. Kato, Phys. Rev. B 77, 104413 (2008). 10.1103/PhysRevB.77.104413 CrossrefGoogle Scholar
  • 7 T. Isono, H. Kamo, A. Ueda, K. Takahashi, M. Kimata, H. Tajima, S. Tsuchiya, T. Terashima, S. Uji, and H. Mori, Phys. Rev. Lett. 112, 177201 (2014). 10.1103/PhysRevLett.112.177201 CrossrefGoogle Scholar
  • 8 Y. Okamoto, M. Nohara, H. Aruga-Katori, and H. Takagi, Phys. Rev. Lett. 99, 137207 (2007). 10.1103/PhysRevLett.99.137207 CrossrefGoogle Scholar
  • 9 R. Dally, T. Hogan, A. Amato, H. Luetkens, C. Baines, J. Rodriguez-Rivera, M. J. Graf, and S. D. Wilson, Phys. Rev. Lett. 113, 247601 (2014). 10.1103/PhysRevLett.113.247601 CrossrefGoogle Scholar
  • 10 A. C. Shockley, F. Bert, J.-C. Orain, Y. Okamoto, and P. Mendels, Phys. Rev. Lett. 115, 047201 (2015). 10.1103/PhysRevLett.115.047201 CrossrefGoogle Scholar
  • 11 M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, J. Am. Chem. Soc. 127, 13462 (2005). 10.1021/ja053891p CrossrefGoogle Scholar
  • 12 S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, and C. Broholm, Science 336, 559 (2012). 10.1126/science.1212154 CrossrefGoogle Scholar
  • 13 Y. Okamoto, H. Yoshida, and Z. Hiroi, J. Phys. Soc. Jpn. 78, 033701 (2009). 10.1143/JPSJ.78.033701 LinkGoogle Scholar
  • 14 J. G. Cheng, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, C. Xu, and H. D. Zhou, Phys. Rev. Lett. 107, 197204 (2011). 10.1103/PhysRevLett.107.197204 CrossrefGoogle Scholar
  • 15 J. A. Quilliam, F. Bert, R. H. Colman, D. Boldrin, A. S. Wills, and P. Mendels, Phys. Rev. B 84, 180401 (2011). 10.1103/PhysRevB.84.180401 CrossrefGoogle Scholar
  • 16 M. Yoshida, Y. Okamoto, M. Takigawa, and Z. Hiroi, J. Phys. Soc. Jpn. 82, 013702 (2013). 10.7566/JPSJ.82.013702 LinkGoogle Scholar
  • 17 F. Izumi and F. Momma, Solid State Phenom. 130, 15 (2007). 10.4028/www.scientific.net/SSP.130.15 CrossrefGoogle Scholar
  • 18 P. Lightfoot and P. Battle, J. Solid State Chem. 89, 174 (1990). 10.1016/0022-4596(90)90309-L CrossrefGoogle Scholar
  • 19 I. Fernandez, R. Greatrex, and N. N. Greenwood, J. Solid State Chem. 34, 121 (1980). 10.1016/0022-4596(80)90410-7 CrossrefGoogle Scholar
  • 20 J. Rijssenbeek, Q. Huang, R. Erwin, H. Zandbergen, and R. Cava, J. Solid State Chem. 146, 65 (1999). 10.1006/jssc.1999.8309 CrossrefGoogle Scholar
  • 21 J. Darriet, M. Drillon, G. Villeneuve, and P. Hagenmuller, J. Solid State Chem. 19, 213 (1976). 10.1016/0022-4596(76)90170-5 CrossrefGoogle Scholar
  • 22 M. S. Senn, A. M. Arevalo-Lopez, T. Saito, Y. Shimakawa, and J. P. Attfield, J. Phys.: Condens. Matter 25, 496008 (2013). 10.1088/0953-8984/25/49/496008 CrossrefGoogle Scholar
  • 23 P. Beran, S. Ivanov, P. Nordblad, S. Middey, A. Nag, D. Sarma, S. Ray, and R. Mathieu, Solid State Sci. 50, 58 (2015). 10.1016/j.solidstatesciences.2015.10.011 CrossrefGoogle Scholar
  • 24 S. V. Streltsov, Phys. Rev. B 88, 024429 (2013). 10.1103/PhysRevB.88.024429 CrossrefGoogle Scholar
  • 25 K. Watanabe, H. Kawamura, H. Nakano, and T. Sakai, J. Phys. Soc. Jpn. 83, 034714 (2014). 10.7566/JPSJ.83.034714 LinkGoogle Scholar