J. Phys. Soc. Jpn. 90, 064706 (2021) [6 Pages]
FULL PAPERS

Single Crystal Growth and Hydrostatic Pressure Study of Charge Density Wave Quantum Critical Lu(Pt1−xPdx)2In

+ Affiliations
1Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.2Max Planck Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany

Determining the origin and consequences of novel phase transitions is a key task in condensed matter physics research. Recently, Lu(Pt1−xPdx)2In was discovered to present a very rare case of strongly enhanced superconductivity at a charge density wave (CDW) quantum critical point (QCP). Unlike in most other systems, the CDW transition here is of second-order. By tuning it continuously to absolute zero temperature with variation of an external non-thermal control parameter, for instance chemical composition x or pressure p, a CDW QCP is approached. We present how we succeeded in synthesising large high-quality single crystals of the new Lu(Pt1−xPdx)2In series with a large number of intermediate concentrations x. We briefly provide information about the challenges in growing phase-pure single crystals. Furthermore, different anomalies in the temperature dependences of magnetic susceptibility χ(T) and electrical resistivity ρ(T) are presented and discussed. The availability of excellent crystals allowed us to investigate the effect of applied hydrostatic pressure p on the CDW and the superconducting state in Lu(Pt0.5Pd0.5)2In by ρ(T)|p measurements.

©2021 The Physical Society of Japan

References

  • 1 N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Haselwimmer, and G. G. Lonzarich, Nature 394, 39 (1998). 10.1038/27838 CrossrefGoogle Scholar
  • 2 A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. von Löhneysen, E. Bucher, R. Ramazashvili, and P. Coleman, Nature 407, 351 (2000). 10.1038/35030039 CrossrefGoogle Scholar
  • 3 H. von Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007). 10.1103/RevModPhys.79.1015 CrossrefGoogle Scholar
  • 4 P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. 4, 186 (2008). 10.1038/nphys892 CrossrefGoogle Scholar
  • 5 T. Giamarchi, C. Ruegg, and O. Tchernyshyov, Nat. Phys. 4, 198 (2008). 10.1038/nphys893 CrossrefGoogle Scholar
  • 6 A. Steppke, R. Küchler, S. Lausberg, E. Lengyel, L. Steinke, R. Borth, T. Lühmann, C. Krellner, M. Nicklas, C. Geibel, F. Steglich, and M. Brando, Science 339, 933 (2013). 10.1126/science.1230583 CrossrefGoogle Scholar
  • 7 M. Brando, D. Belitz, F. M. Grosche, and T. R. Kirkpatrick, Rev. Mod. Phys. 88, 025006 (2016). 10.1103/RevModPhys.88.025006 CrossrefGoogle Scholar
  • 8 T. Gruner, D. Jang, Z. Huesges, R. Cardoso-Gil, G. H. Fecher, M. M. Koza, O. Stockert, A. P. Mackenzie, M. Brando, and C. Geibel, Nat. Phys. 13, 967 (2017). 10.1038/nphys4191 CrossrefGoogle Scholar
  • 9 E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, Nat. Phys. 2, 544 (2006). 10.1038/nphys360 CrossrefGoogle Scholar
  • 10 Y. Feng, J. Wang, R. Jaramillo, J. van Wezel, S. Haravifard, G. Srajer, Y. Liu, Z.-A. Xu, P. B. Littlewood, and T. F. Rosenbaum, Proc. Natl. Acad. Sci. U.S.A. 109, 7224 (2012). 10.1073/pnas.1202434109 CrossrefGoogle Scholar
  • 11 M. Monteverde, J. Lorenzana, P. Monceau, and M. Núñez Regueiro, Phys. Rev. B 88, 180504 (2013). 10.1103/PhysRevB.88.180504 CrossrefGoogle Scholar
  • 12 L. E. Klintberg, S. K. Goh, P. L. Alireza, P. J. Saines, D. A. Tompsett, P. W. Logg, J. Yang, B. Chen, K. Yoshimura, and F. M. Grosche, Phys. Rev. Lett. 109, 237008 (2012). 10.1103/PhysRevLett.109.237008 CrossrefGoogle Scholar
  • 13 S. K. Goh, D. A. Tompsett, P. J. Saines, H. C. Chang, T. Matsumoto, M. Imai, K. Yoshimura, and F. M. Grosche, Phys. Rev. Lett. 114, 097002 (2015). 10.1103/PhysRevLett.114.097002 CrossrefGoogle Scholar
  • 14 D. A. Zocco, J. J. Hamlin, K. Grube, J.-H. Chu, H.-H. Kuo, I. R. Fisher, and M. B. Maple, Phys. Rev. B 91, 205114 (2015). 10.1103/PhysRevB.91.205114 CrossrefGoogle Scholar
  • 15 X. Zhu, W. Ning, L. Li, L. Ling, R. Zhang, J. Zhang, K. Wang, Y. Liu, L. Pi, Y. Ma, H. Du, M. Tian, Y. Sun, C. Petrovic, and Y. Zhang, Sci. Rep. 6, 26974 (2016). 10.1038/srep26974 CrossrefGoogle Scholar
  • 16 H. Kim, J. H. Shim, S. Kim, J.-H. Park, K. Kim, and B. I. Min, Phys. Rev. Lett. 125, 157001 (2020). 10.1103/PhysRevLett.125.157001 CrossrefGoogle Scholar
  • 17 M. O. Ajeesh, T. Gruner, C. Geibel, and M. Nicklas, J. Phys. Soc. Jpn. 90, 035001 (2021). 10.7566/JPSJ.90.035001 LinkGoogle Scholar
  • 18 T. F. Smith, C. W. Chu, and M. B. Maple, Cryogenics 9, 53 (1969). 10.1016/0011-2275(69)90260-4 CrossrefGoogle Scholar
  • 19 T. Gruner, S. Lucas, C. Geibel, K. Kaneko, S. Tsutsui, and O. Stockert, private communication (2021). Google Scholar
  • 20 T. Gruner, D. Jang, A. Steppke, M. Brando, F. Ritter, C. Krellner, and C. Geibel, J. Phys.: Condens. Matter 26, 485002 (2014). 10.1088/0953-8984/26/48/485002 CrossrefGoogle Scholar
  • 21 C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys. Lett. 53, 354 (2001). 10.1209/epl/i2001-00161-8 CrossrefGoogle Scholar
  • 22 J. Chen, M. B. Gamza, J. Banda, K. Murphy, J. Tarrant, M. Brando, and F. M. Grosche, Phys. Rev. Lett. 125, 237002 (2020). 10.1103/PhysRevLett.125.237002 CrossrefGoogle Scholar
  • 23 Link to Data Repository at the University of Cambridge; https://doi.org/10.17863/CAM.66599. Google Scholar