JPS Conf. Proc. 24, 011011 (2019) [6 pages]
Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018)
Dark Matter Search by Means of Highly Radiopure NaI(Tl) Scintillator
1Department of Physics, Tokushima University, Tokushima 770-8506, Japan
2Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
3Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0042, Japan
4Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
5Graduate School and Faculty of Human Environment, Osaka Sangyo University, Daito, Osaka 574-8530, Japan
6Graduate School of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
7Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan
8I.S.C. Lab., Settsu, Osaka 566-0052, Japan
9Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
Received March 16, 2018

A highly radiopure NaI(Tl) scintillator was developed to search for cosmic dark matter. The radioactive impurities in NaI(Tl) crystal was reduced by investigating the origin of them. Serious impurities, 238U, 228Th, 210Pb, and 40K are effectively reduced by optimizing the reduction methods. Low background experiment to estimate the future sensitivity was performed in Kamioka underground observatory in Gifu, Japan. Sufficient sensitivity to dark matter search was shown by test experiment by using middle size NaI(Tl) detector.

©2019 The Physical Society of Japan

References

  • 1) C. L.Bennett et al., Astrophys. J. Suppl. Ser. 208, 20 (2013). 10.1088/0067-0049/208/2/20 Google Scholar
  • 2) Planck collaboration, arXiv:1303.5076 (2014) [DOI:10.1051/0004-6361/201321591].Google Scholar
  • 3) K.Freese et al., Phys. Rev. D 37, 3388 (1988). 10.1103/PhysRevD.37.3388 Google Scholar
  • 4) A.Drukier et al., Phys. Rev. D 33, 3495 (1986). 10.1103/PhysRevD.33.3495 Google Scholar
  • 5) R.Bernabei et al., Phys. Lett. B 424, 195 (1998). 10.1016/S0370-2693(98)00172-5 Google Scholar
  • 6) R.Bernabei et al., Eur. Phys. J. C 73, 2648 (2013). 10.1140/epjc/s10052-013-2648-7 Google Scholar
  • 7) J.Cherwinka et al., Phys. Rev. D 90, 092005 (2014). 10.1103/PhysRevD.90.092005 Google Scholar
  • 8) R.Agnese et al. (CDMS Collab.), Phys. Rev. Lett. 111, 251301 (2013). 10.1103/PhysRevLett.111.251301 Google Scholar
  • 9) E.Aprile et al., Phys. Rev. Lett. 119, 181301 (2017). 10.1103/PhysRevLett.119.181301 Google Scholar
  • 10) D. S.Akerib et al. (LUX Collab.), Phys. Rev. Lett. 112, 091303 (2014). 10.1103/PhysRevLett.112.091303 Google Scholar
  • 11) K.Abe et al., Phys. Lett. B 719, 78 (2013). 10.1016/j.physletb.2013.01.001 Google Scholar
  • 12) K.-I.Fushimi et al., JPS Conf. Proc. 11, 020003 (2016). 10.7566/JPSCP.11.020003[Abstract] Google Scholar
  • 13) P.Adhikari et al., Eur. Phys. J. C 76, 185 (2016). 10.1140/epjc/s10052-016-4030-z Google Scholar
  • 14) J.Amaré et al., J. Phys.: Conf. Ser. 718, 042052 (2016). 10.1088/1742-6596/718/4/042052 Google Scholar
  • 15) F.Froborg et al., J. Phys.: Conf. Ser. 718, 042021 (2016). 10.1088/1742-6596/718/4/042021 Google Scholar
  • 16) G.Adhikari et al., Eur. Phys. J. C 78, 107 (2018). 10.1140/epjc/s10052-018-5590-x Google Scholar
  • 17) R.Bernabei et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 297 (2008). 10.1016/j.nima.2008.04.082 Google Scholar
  • 18) K.Fushimi et al., J. Phys. Soc. Jpn. 74, 3117 (2005). 10.1143/JPSJ.74.3117[Abstract] Google Scholar
  • 19) M. T.Ressell and D. J.Dean, Phys. Rev. C 56, 535 (1997). 10.1103/PhysRevC.56.535 Google Scholar
  • 20) J.Ellis et al., Phys. Lett. B 212, 375 (1988). 10.1016/0370-2693(88)91332-9 Google Scholar
  • 21) K.Fushimi et al., Phys. Rev. C 47, R425(R) (1993). 10.1103/PhysRevC.47.R425 Google Scholar
  • 22) A.Terashima et al., J. Phys.: Conf. Ser. 120, 052029 (2008). 10.1088/1742-6596/120/5/052029 Google Scholar