J. Phys. Soc. Jpn. 88, 024001 (2019) [5 Pages]
FULL PAPERS

Flow-Velocity-Dependent Transition of Anisotropic Crack Patterns in CaCO3 Paste

+ Affiliations
Department of Environmental Sciences, University of Yamanashi, Kofu 400-8510, Japan

We investigate the desiccation crack patterns on the surface of a drying paste made of calcium carbonate (CaCO3) powder and distilled water. Forced vibration of the CaCO3 paste prior to drying results in an anisotropic crack pattern, in which many long cracks develop along a specific preferred direction. We reveal that the preferred direction changes from perpendicular to parallel to the vibration direction at the threshold velocity of vibration. The transition is attributed to the reorientation of constituent particles subjected to the forced oscillatory flow of fluid in the paste.

©2019 The Physical Society of Japan

References

  • 1 J.-H. Li and L. M. Zhang, Eng. Geol. 123, 347 (2011). 10.1016/j.enggeo.2011.09.015 CrossrefGoogle Scholar
  • 2 C.-S. Tang, B. Shi, C. Liu, W.-B. Suo, and L. Gao, Appl. Clay Sci. 52, 69 (2011). 10.1016/j.clay.2011.01.032 CrossrefGoogle Scholar
  • 3 L. Goehring, Philos. Trans. R. Soc. A 371, 20120353 (2013). 10.1098/rsta.2012.0353 CrossrefGoogle Scholar
  • 4 S. Costa, J. Kodikara, and B. Shannon, Geotechnique 63, 18 (2013). 10.1680/geot.9.P.105 CrossrefGoogle Scholar
  • 5 S. Bucklow, Stud. Conserv. 42, 129 (1997). 10.1179/sic.1997.42.3.129 CrossrefGoogle Scholar
  • 6 L. Krzemień, M. Łukomski, Ł. Bratasz, R. Kozłowski, and M. F. Mecklenburg, Stud. Conserv. 61, 324 (2016). 10.1080/00393630.2016.1140428 CrossrefGoogle Scholar
  • 7 T. Mizuguchi, A. Nishimoto, S. Kitsunezaki, Y. Yamazaki, and I. Aoki, Phys. Rev. E 71, 056122 (2005). 10.1103/PhysRevE.71.056122 CrossrefGoogle Scholar
  • 8 K. A. Shorlin, J. R. de Bruyn, M. Graham, and S. W. Morris, Phys. Rev. E 61, 6950 (2000). 10.1103/PhysRevE.61.6950 CrossrefGoogle Scholar
  • 9 A. Toramaru and T. Matsumoto, J. Geophys. Res. 109, B02205 (2004). 10.1029/2003JB002686 CrossrefGoogle Scholar
  • 10 J. Bisschop, Int. J. Fract. 154, 211 (2008). 10.1007/s10704-008-9268-5 CrossrefGoogle Scholar
  • 11 P. Nandakishore and L. Goehring, Soft Matter 12, 2253 (2016). 10.1039/C5SM02389K CrossrefGoogle Scholar
  • 12 N. Shokri, P. Lehmann, and D. Or, Phys. Rev. E 81, 046308 (2010). 10.1103/PhysRevE.81.046308 CrossrefGoogle Scholar
  • 13 L. Goehring, Phys. Rev. E 80, 036116 (2009). 10.1103/PhysRevE.80.036116 CrossrefGoogle Scholar
  • 14 Y. Akiba, J. Magome, H. Kobayashi, and H. Shima, Phys. Rev. E 96, 023003 (2017). 10.1103/PhysRevE.96.023003 CrossrefGoogle Scholar
  • 15 S. Hirobe and K. Oguni, Comput. Methods Appl. Mech. Eng. 307, 470 (2016). 10.1016/j.cma.2016.04.029 CrossrefGoogle Scholar
  • 16 A. Nakahara and Y. Matsuo, J. Phys. Soc. Jpn. 74, 1362 (2005). 10.1143/JPSJ.74.1362 LinkGoogle Scholar
  • 17 A. Nakahara and Y. Matsuo, Phys. Rev. E 74, 045102(R) (2006). 10.1103/PhysRevE.74.045102 CrossrefGoogle Scholar
  • 18 S. Kitsunezaki, A. Sasaki, A. Nishimoto, T. Mizuguchi, Y. Matsuo, and A. Nakahara, Eur. Phys. J. E 40, 88 (2017). 10.1140/epje/i2017-11578-4 CrossrefGoogle Scholar
  • 19 Y. Matsuo and A. Nakahara, J. Phys. Soc. Jpn. 81, 024801 (2012). 10.1143/JPSJ.81.024801 LinkGoogle Scholar
  • 20 M. Otsuki, Phys. Rev. E 72, 046115 (2005). 10.1103/PhysRevE.72.046115 CrossrefGoogle Scholar
  • 21 O. Takeshi, Phys. Rev. E 77, 061501 (2008). 10.1103/PhysRevE.77.061501 CrossrefGoogle Scholar
  • 22 H. Tanaka and T. Araki, Phys. Rev. Lett. 85, 1338 (2000). 10.1103/PhysRevLett.85.1338 CrossrefGoogle Scholar
  • 23 ArcGIS (version 10.3.1) for Desktop: ESRI Inc. Redlands, CA. Google Scholar