J. Phys. Soc. Jpn. 88, 093701 (2019) [5 Pages]
LETTERS

Fluctuation-Induced First-Order Transition and Tricritical Point in EuPtSi

+ Affiliations
1Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan2Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 093-0213, Japan3Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 093-0213, Japan

The cubic chiral magnet EuPtSi undergoes a helimagnetic transition at TN = 4.0 K. We examined the magnetic field (H) evolution of this phase transition by means of high-precision magnetization (M) measurements on a high-quality single crystal. At low fields, the temperature derivative of the magnetization dM/dT exhibits a sharp symmetric peak at TN(H), reminiscent of a first-order transition. By increasing H, the shape of dM/dT drastically changes above a certain field to an asymmetric step-like function. The results provide strong evidence for a tricritical point, whose location is strongly field-orientation dependent. Field variation of M in the paramagnetic state above TN indicates that strong antiferromagnetic fluctuations exist and persist up to ∼7 K, in accordance with a fluctuation-induced first-order transition.

©2019 The Physical Society of Japan

References

  • 1 D. Adroja, B. Padalia, S. Malik, R. Nagarajan, and R. Vijayaraghavan, J. Magn. Magn. Mater. 89, 375 (1990). 10.1016/0304-8853(90)90751-B CrossrefGoogle Scholar
  • 2 M. Kakihana, D. Aoki, A. Nakamura, F. Honda, M. Nakashima, Y. Amako, S. Nakamura, T. Sakakibara, M. Hedo, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn. 87, 023701 (2018). 10.7566/JPSJ.87.023701 LinkGoogle Scholar
  • 3 D. G. Franco, Y. Prots, C. Geibel, and S. Seiro, Phys. Rev. B 96, 014401 (2017). 10.1103/PhysRevB.96.014401 CrossrefGoogle Scholar
  • 4 M. Kakihana, K. Nishimura, Y. Ashitomi, T. Yara, D. Aoki, A. Nakamura, F. Honda, M. Nakashima, Y. Amako, Y. Uwatoko, T. Sakakibara, S. Nakamura, T. Takeuchi, Y. Haga, E. Yamamoto, H. Harima, M. Hedo, T. Nakama, and Y. Ōnuki, J. Electron. Mater. 46, 3572 (2017). 10.1007/s11664-016-5265-z CrossrefGoogle Scholar
  • 5 T. Takeuchi, M. Kakihana, M. Hedo, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn. 88, 053703 (2019). 10.7566/JPSJ.88.053703 LinkGoogle Scholar
  • 6 K. Kaneko, M. D. Frontzek, M. Matsuda, A. Nakao, K. Munakata, T. Ohhara, M. Kakihana, Y. Haga, M. Hedo, T. Nakama, and Y. Ōnuki, J. Phys. Soc. Jpn. 88, 013702 (2019). 10.7566/JPSJ.88.013702 LinkGoogle Scholar
  • 7 P. Bak, S. Krinsky, and D. Mukamel, Phys. Rev. Lett. 36, 52 (1976). 10.1103/PhysRevLett.36.52 CrossrefGoogle Scholar
  • 8 O. G. Mouritsen, S. J. K. Jensen, and P. Bak, Phys. Rev. Lett. 39, 629 (1977). 10.1103/PhysRevLett.39.629 CrossrefGoogle Scholar
  • 9 A. Bauer, M. Garst, and C. Pfleiderer, Phys. Rev. Lett. 110, 177207 (2013). 10.1103/PhysRevLett.110.177207 CrossrefGoogle Scholar
  • 10 M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, and C. Pfleiderer, Phys. Rev. B 87, 134407 (2013). 10.1103/PhysRevB.87.134407 CrossrefGoogle Scholar
  • 11 M. Kerszberg and D. Mukamel, Phys. Rev. B 23, 3953 (1981). 10.1103/PhysRevB.23.3953 CrossrefGoogle Scholar
  • 12 T. Sakakibara, H. Mitamura, T. Tayama, and H. Amitsuka, Jpn. J. Appl. Phys. 33, 5067 (1994). 10.1143/JJAP.33.5067 CrossrefGoogle Scholar
  • 13 B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck, Phys. Rev. Lett. 7, 160 (1961). 10.1103/PhysRevLett.7.160 CrossrefGoogle Scholar
  • 14 N. Menyuk, K. Dwight, and T. B. Reed, Phys. Rev. B 3, 1689 (1971). 10.1103/PhysRevB.3.1689 CrossrefGoogle Scholar
  • 15 Y. Kitano and T. Nagamiya, Prog. Theor. Phys. 31, 1 (1964). 10.1143/PTP.31.1 CrossrefGoogle Scholar
  • 16 A. Bauer and C. Pfleiderer, Phys. Rev. B 85, 214418 (2012). 10.1103/PhysRevB.85.214418 CrossrefGoogle Scholar
  • 17 A. Bauer and C. Pfleiderer, in Generic Aspects of Skyrmion Lattices in Chiral Magnets, ed. J. Seidel (Springer, Cham, 2016). CrossrefGoogle Scholar
  • 18 S. Buhrandt and L. Fritz, Phys. Rev. B 88, 195137 (2013). 10.1103/PhysRevB.88.195137 CrossrefGoogle Scholar