J. Phys. Soc. Jpn. 89, 114301 (2020) [4 Pages]
FULL PAPERS

Prospect for Vibrational Transition Frequency Measurement of Rare-gas Hydride Ions

+ Affiliations
1National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan2Atomic Molecular and Optical Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

A method of precise measurement of the \(X^{1}\Sigma (v,J,F) = (0,0,1/2) - (1,1,1/2)\) transitions in HeH+ (89.1 THz), NeH+ (81.3 THz), and ArH+ (77.1 THz) molecular ions is proposed. These E1-allowed transitions are useful for locking the frequencies of infrared lasers because they are free from electric-quadrupole shifts. The DC Stark and Zeeman shifts are suppressed to below 10−16. The molecular ions are prepared in the \((0,0,1/2)\) state using a cryogenic chamber without optical pumping. Measurements with low systematic uncertainty using a small number of molecular ions is possible by quantum logical spectroscopic detection of the \((0,2,3/2)\) state to which molecular ions are pumped by the clock laser.

©2020 The Physical Society of Japan

References

  • 1 I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, Nat. Photonics 9, 185 (2015). 10.1038/nphoton.2015.5 CrossrefGoogle Scholar
  • 2 T. Nicholson, S. Campbell, R. Hutson, G. Marti, B. Bloom, R. McNally, W. Zhang, M. Barrett, M. Saflonova, G. Strouse, W. Tew, and J. Ye, Nat. Commun. 6, 6896 (2015). 10.1038/ncomms7896 CrossrefGoogle Scholar
  • 3 C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010). 10.1103/PhysRevLett.104.070802 CrossrefGoogle Scholar
  • 4 N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik, Phys. Rev. Lett. 116, 063001 (2016). 10.1103/PhysRevLett.116.063001 CrossrefGoogle Scholar
  • 5 M. Ahmadi, B. X. R. Alves, C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, M. Charlton, S. Cohen, R. Collister, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, G. Stutter, C. So, T. D. Tharp, R. I. Thompson, D. P. van der Werf, and J. S. Wurtele, Nature 557, 71 (2018). 10.1038/s41586-018-0017-2 CrossrefGoogle Scholar
  • 6 P. Bowe, L. Hornekaer, C. Brodersen, M. Drewsen, J. S. Hangst, and J. P. Schiffer, Phys. Rev. Lett. 82, 2071 (1999). 10.1103/PhysRevLett.82.2071 CrossrefGoogle Scholar
  • 7 P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, Science 309, 749 (2005). 10.1126/science.1114375 CrossrefGoogle Scholar
  • 8 C. W. Chou, C. Kurz, D. B. Hume, P. N. Plessow, D. R. Leiblandt, and D. Leibfried, Nature 545, 203 (2017). 10.1038/nature22338 CrossrefGoogle Scholar
  • 9 F. Wolf, Y. Wan, J. C. Help, F. Gebert, C. Shi, and P. O. Schmidt, Nature 530, 457 (2016). 10.1038/nature16513 CrossrefGoogle Scholar
  • 10 M. Sinhal, Z. Meir, K. Najafian, G. Hegi, and S. Willitsch, Science 367, 1213 (2020). 10.1126/science.aaz9837 CrossrefGoogle Scholar
  • 11 Y. Lin, D. R. Leibrandt, D. Leibfried, and C. W. Chou, Nature 581, 273 (2020). 10.1038/s41586-020-2257-1 CrossrefGoogle Scholar
  • 12 M. Kajita, M. Abe, M. Hada, and Y. Moriwaki, J. Phys. B 44, 025402 (2011). 10.1088/0953-4075/44/2/025402 CrossrefGoogle Scholar
  • 13 M. Kajita, G. Gopakumar, M. Abe, M. Hada, and M. Keller, Phys. Rev. A 89, 032509 (2014). 10.1103/PhysRevA.89.032509 CrossrefGoogle Scholar
  • 14 M. Kajita, Phys. Rev. A 95, 023418 (2017). 10.1103/PhysRevA.95.023418 CrossrefGoogle Scholar
  • 15 M. G. Kokish, P. R. Stollenwerk, M. Kajita, and B. C. Odom, Phys. Rev. A 98, 052513 (2018). 10.1103/PhysRevA.98.052513 CrossrefGoogle Scholar
  • 16 M. Kajita, R. Bala, and M. Abe, J. Phys. B 53, 085401 (2020). 10.1088/1361-6455/ab7425 CrossrefGoogle Scholar
  • 17 M. Kajita and N. Kimura, J. Phys. B 53, 135401 (2020). 10.1088/1361-6455/ab894b CrossrefGoogle Scholar
  • 18 A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, J. Chem. Phys. 141, 101101 (2014). 10.1063/1.4895505 CrossrefGoogle Scholar
  • 19 A. Schliesser, N. Picque, and T. W. Haensch, Nat. Photonics 6, 440 (2012). 10.1038/nphoton.2012.142 CrossrefGoogle Scholar
  • 20 M. Wong, P. Bernath, and T. Amano, J. Chem. Phys. 77, 693 (1982). 10.1063/1.443883 CrossrefGoogle Scholar
  • 21 N. Picqué and G. Guelachvili, Vib. Spectrosc. 19, 295 (1999). 10.1016/S0924-2031(98)00044-7 CrossrefGoogle Scholar
  • 22 J. M. Brown, D. A. Jennings, M. Vanek, L. R. Zink, and K. M. Evenson, J. Mol. Spectrosc. 128, 587 (1988). 10.1016/0022-2852(88)90173-7 CrossrefGoogle Scholar
  • 23 B. Roth, P. Blythe, H. Daerr, I. Patacchini, and S. Schiller, J. Phys. B 39, S1241 (2006). 10.1088/0953-4075/39/19/S30 CrossrefGoogle Scholar
  • 24 N. Kimura, K. Okada, T. Takayanagi, M. Wada, S. Ohtani, and H. A. Schuessler, Phys. Rev. A 83, 033422 (2011). 10.1103/PhysRevA.83.033422 CrossrefGoogle Scholar
  • 25 O. Novotný, P. Wilhelm, D. Paul, Á. Kálosi, S. Saurabh, A. Becker, K. Blaum, S. George, J. Göck, M. Grieser, F. Grussie, R. von Hahn, C. Krantz, H. Kreckel, C. Meyer, P. M. Mishra, D. Muell, F. Nuesslein, D. A. Orlov, M. Rimmler, V. C. Schmidt, A. Shornikov, A. S. Terekhov, S. Vogel, D. Zajfman, and A. Wolf, Science 365, 676 (2019). 10.1126/science.aax5921 CrossrefGoogle Scholar
  • 26 F. Matsushima, Y. Ohtaki, O. Torige, and K. Takagi, J. Chem. Phys. 109, 2242 (1998). 10.1063/1.476791 CrossrefGoogle Scholar
  • 27 D.-J. Liu, W.-C. Ho, and T. Oka, J. Chem. Phys. 87, 2442 (1987). 10.1063/1.453084 CrossrefGoogle Scholar
  • 28 S. Civis̆, R. D’Cunha, and K. Kawaguchi, J. Mol. Spectrosc. 210, 127 (2001). 10.1006/jmsp.2001.8448 CrossrefGoogle Scholar
  • 29 A. A. Madej, P. Dube, Z. Zhou, J. E. Bernard, and M. Gertsvolf, Phys. Rev. Lett. 109, 203002 (2012). 10.1103/PhysRevLett.109.203002 CrossrefGoogle Scholar