J. Phys. Soc. Jpn. 85, 054601 (2016) [9 Pages]
FULL PAPERS

Enhanced Si–O Bond Breaking in Silica Glass by Water Dimer: A Hybrid Quantum–Classical Simulation Study

+ Affiliations
1Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8585, Japan2Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

A hybrid quantum–classical simulation of a 4,608-atom silica glass is performed at a temperature of 400 K with either a water monomer or dimer inserted in a void. The quantum region that includes the water and the surrounding atoms is treated by the density-functional theory (DFT). During a simulation, the silica glass is gradually compressed or expanded. No Si–O bond breaking occurs with a water monomer until the silica glass collapses. With a water dimer, we find that Si–O bond breaking occurs through three steps in 3 out of 24 compression cases: (i) H-transfer as 2H2O → OH + H3O+ accompanied by the adsorption of OH at a strained Si to make it five-coordinated, (ii) breaking of a Si–O bond that originates from the five-coordinated Si, and (iii) H-transfer from H3O+ to the O of the broken Si–O bond. A separate DFT calculation confirms that the barrier energy of the bond breaking with a water dimer under compression is smaller than that with a water monomer and that the barrier energy decreases significantly when the silica glass is compressed further.

©2016 The Physical Society of Japan

References

  • 1 M. Tomozawa, in Silicon-Based Materials and Devices, ed. H. S. Nalwa (Academic Press, New York, 2001) Vol. 1, p. 127. CrossrefGoogle Scholar
  • 2 H. Hosono, in Defects in SiO2 and Related Dielectrics, ed. G. Pacchini (Kluwer Academic, Dordrecht, 2000) p. 213. CrossrefGoogle Scholar
  • 3 J. Senior, Optical Fiber Communications: Principles and Practice (Prentice-Hall, Upper Saddle River, NJ, 2008). Google Scholar
  • 4 M. Shiozawa, T. Watanabe, R. Imai, M. Umeda, T. Mine, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Watanabe, J. Laser Micro/Nanoeng. 9, 1 (2014). 10.2961/jlmn.2014.01.0001 CrossrefGoogle Scholar
  • 5 A. Deptuła, M. Miłkowska, W. Łada, T. Olczak, D. Wawszczak, T. Smolinski, F. Zaza, M. Brykala, A. G. Chmielewski, and K. C. Goretta, New J. Glass Ceram. 1, 105 (2011). 10.4236/njgc.2011.13015 CrossrefGoogle Scholar
  • 6 K. M. Davis and M. Tomozawa, J. Non-Cryst. Solids 185, 203 (1995). 10.1016/0022-3093(95)00015-1 CrossrefGoogle Scholar
  • 7 K. M. Davis and M. Tomozawa, J. Non-Cryst. Solids 201, 177 (1996). 10.1016/0022-3093(95)00631-1 CrossrefGoogle Scholar
  • 8 T. A. Michalske and S. W. Freiman, Nature 295, 511 (1982). 10.1038/295511a0 CrossrefGoogle Scholar
  • 9 B. Lawn, Fracture of Brittle Solids (Cambridge University Press, New York, 1993) p. 172. CrossrefGoogle Scholar
  • 10 J. E. Del Bene, K. Runge, and R. J. Bartlett, Comput. Mater. Sci. 27, 102 (2003). 10.1016/S0927-0256(02)00432-9 CrossrefGoogle Scholar
  • 11 T. Bakos, S. N. Rashkeev, and S. T. Pantelides, Phys. Rev. Lett. 88, 055508 (2002). 10.1103/PhysRevLett.88.055508 CrossrefGoogle Scholar
  • 12 T. Bakos, S. N. Rashkeev, and S. T. Pantelides, Phys. Rev. B 69, 195206 (2004). 10.1103/PhysRevB.69.195206 CrossrefGoogle Scholar
  • 13 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) [Erratum 78, 1396 (1997)]. 10.1103/PhysRevLett.77.3865 CrossrefGoogle Scholar
  • 14 I. G. Batyrev, B. Tuttle, D. M. Fleetwood, R. D. Schrimpf, L. Tsetseris, and S. T. Pantelides, Phys. Rev. Lett. 100, 105503 (2008). 10.1103/PhysRevLett.100.105503 CrossrefGoogle Scholar
  • 15 S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R. K. Kalia, Comput. Phys. Commun. 138, 143 (2001). 10.1016/S0010-4655(01)00203-X CrossrefGoogle Scholar
  • 16 S. Ogata, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. 149, 30 (2002). 10.1016/S0010-4655(02)00612-4 CrossrefGoogle Scholar
  • 17 S. Ogata, Phys. Rev. B 72, 045348 (2005). 10.1103/PhysRevB.72.045348 CrossrefGoogle Scholar
  • 18 L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976). 10.1063/1.433213 CrossrefGoogle Scholar
  • 19 P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjö, Phys. Rev. B 41, 12197 (1990). 10.1103/PhysRevB.41.12197 CrossrefGoogle Scholar
  • 20 B. Vessal, M. Amini, and C. R. A. Catlow, J. Non-Cryst. Solids 159, 184 (1993). 10.1016/0022-3093(93)91295-E CrossrefGoogle Scholar
  • 21 A. Takada, P. Richet, C. R. A. Catlow, and G. D. Price, J. Non-Cryst. Solids 354, 181 (2008). 10.1016/j.jnoncrysol.2007.07.062 CrossrefGoogle Scholar
  • 22 M. P. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, U.K., 1987). Google Scholar
  • 23 T. Kouno and S. Ogata, J. Phys. Soc. Jpn. 77, 054708 (2008). 10.1143/JPSJ.77.054708 LinkGoogle Scholar
  • 24 S. Ogata, Y. Abe, N. Ohba, and R. Kobayashi, J. Appl. Phys. 108, 064313 (2010). 10.1063/1.3481451 CrossrefGoogle Scholar
  • 25 N. Ohba, S. Ogata, T. Kouno, and R. Asahi, Comput. Mater. Sci. 108, 250 (2015). 10.1016/j.commatsci.2015.06.018 CrossrefGoogle Scholar
  • 26 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). 10.1103/RevModPhys.64.1045 CrossrefGoogle Scholar
  • 27 N. Ohba, S. Ogata, T. Kouno, T. Tamura, and R. Kobayashi, Comput. Phys. Commun. 183, 1664 (2012). 10.1016/j.cpc.2012.03.004 CrossrefGoogle Scholar
  • 28 S. Ogata, N. Ohba, and T. Kouno, J. Phys. Chem. C 117, 17960 (2013). 10.1021/jp405912f CrossrefGoogle Scholar
  • 29 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991). 10.1103/PhysRevB.43.1993 CrossrefGoogle Scholar
  • 30 R. M. Van Ginhoven, H. Jónsson, B. Park, and L. R. Corrales, J. Phys. Chem. B 109, 10936 (2005). 10.1021/jp044973n CrossrefGoogle Scholar
  • 31 K. P. Driver, R. E. Cohen, Z. Wu, B. Militzer, P. López Ríos, M. D. Towler, R. J. Needs, and J. W. Wilkins, Proc. Natl. Acad. Sci. U.S.A. 107, 9519 (2010). 10.1073/pnas.0912130107 CrossrefGoogle Scholar
  • 32 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984). 10.1063/1.448118 CrossrefGoogle Scholar
  • 33 K. Muralidharan, J. H. Simons, P. A. Deymier, and K. Runge, J. Non-Cryst. Solids 351, 1532 (2005). 10.1016/j.jnoncrysol.2005.03.026 CrossrefGoogle Scholar
  • 34 R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955). 10.1063/1.1740588 CrossrefGoogle Scholar